Fe

DH series New OCR providing Higher Reliability

Fuji Electric FA Components \& Systems Co.,Ltd.

-Based Standards

IEC60947-2	Electrotechnical Commission
EN60947-2	European Standard
AS 3947-2.	Australian Standard
NEMA PUB NO.SG3	National Electrical Manufactures Association
ANSI C37.13.	American National Standard Institute
JIS C8372	Japanese Industrial Standards

1. Features
2. Type number nomenclature
3. Specifications and Ratings
4. Combination of overcurrent tripping device and indicator 8
5. Characteristics of overcurrent trip device 10
6. Dimensions 11
7. Wiring diagrams 14
8. Accessories 16

Features

The ultimate in compactness and operational capability

Standardized basic dimenstions

The height and depth dimensions are identical in all sizes to 3200A. There are two common widths or frame size, from 800-2000A and from 2500-3200A for the standard series. The panel cutout size is the same for all types of DH series ACB, which makes it easy to arrange the ACBs in switchboards.
Maximum power from minimum volume was central to the design specification. With a depth of 290 mm for the fixed type and 345 mm for draw-out, it is one of the smallest ACBs in the world.
ACBs with front connections are available off-the-shelf.
Front connections are especially suitable for smaller-depth switchboards

Increased accessibility from the front
It enhances ease of installation, operation, and maintenance.
The double insulated design ensures that most accessories can be safely and easily, installed by the user. Control, auxiliary and position switch terminals are mounted at the front on the ACB body for easy access. Due to the increased level of harmonics within the distribution network, the neutral phase is fully rated as standard.

No extra arc space required, vertical stacking permitted

The DH series ACB dissipates all arc energy within its unique "Double Break" arc chamber. The internal energy dissipation within the ACB allows the clearance distance of the ACB to nearby earthed metal to be zero. This will assist in minimizing switchboard height and costs.

A high performance and reliability

Very fast interruption by
 "Double Break" system

The unique "Double Break" main contact system ensures extremely fast interruption of short-circuit currents and substantially reduces main contact wear. The internally symmetrical
"Double Break" structure allows reverse power connection.

Enhanced selectivity

At Fuji we are so concerned about selectivity that all our protection relays have 'LSI' characteristics as standard.

This provides an adjustable time delay on overload (L) and also the I^{2} t ramp characteristic (S).
As shown, these are essential to provide selectivity when grading with other protective devices such as downstream fuses and upstream relays.
The standard 'LSI' curve provides more than five million combinations of unique time current characteristics.
Zone selective interlocking is available to provide zero time delay selectivity.
As the rated breaking capacity is identical to the rated short-time withstand current full selectivity can be achieved.

No clamp screws used for the main circuit contact units

There are no clamp screws or flexible leads in the main circuit contact units.
This substantially enhances the durability of the main circuit contact units and improves the reliability in ON-OFF operation.

Replacement of the main contacts

The fixed and moving main contacts can easily be replaced in the field, thus prolonging the life on the circuit breaker.
Changing each pole takes around 15 minutes.

[^0]
FUJI ACB provides positive protection for electric power systems.
 The Fuji ACB DH series is equipped with an RMS sensing over-current release (OCR) having a wide range of protection functions and capabilities.

Optimum protective

coordination

Why use a separate panel mounted protection relay when you can have all the benefits of I.D.M.T. protection integral to the ACB?

Fuji ACB is available with a choice of flexible protection curves to assist in selectivity applications.

All these curves are user definable and comply with IEC 60255-3. Standard transformer and generator protection characteristics are also available.

AGR-L Industrial \& transformer protection AGR-R Characteristics to IEC 60255-3 AGR-S Generator protection

Inverse Definite Minimum Time (I.D.M.T.)
S.I. Standard Inverse
V.I. Very Inverse
E.I. Extremely Inverse

Standard OCR with adjustment dial Type AGR-11B

Standard OCR with LCD Type AGR-21B,22B

Enhanced OCR with LCD Type AGR-31B

Overload protection

Adjustable from 40-100\% of rated current. True r.m.s detection up to the 19th harmonic, a distant vision for the competition who rarely see past the 7th. Neutral protection for all those Triple-N harmonics, such as 3rd, 9th and 15th. Also in case we forgot to mention, a "thermal memory" as standard!

Two channel pre-trip alarm function (S-characteristic) $* 1$

This function can be used to monitor and switch on additional power backup to feed critical circuits. For example, the function can be set so that when a pre-trip alarm is activated, an emergency generator starts to ensure a constant supply. This feature is only available on some AGR21 OCR models with a generator "S" characteristic.

- N -phase protection function (optional) In 3-phase, 4-wire systems that contain harmonic distortion, the 3rd harmonic may cause large currents to flow through the neutral conductor. The N-phase protection function prevents the neutral conductor from sustaining damage or burnout due to these large currents. Available in all OCRs except for generator " S " characteristic types.

Reverse power trip function

(S-characteristic) $* 1$

(The first-ever feature for ACBs)

This feature provides additional protection when paralleling generators. The AGR21 OCR for generator protection with the reverse power trip function, negates the need for installation and wiring in an external reverse power relay. This feature is available using an AGR21 OCR with a generator " S " type characteristic only.

- Ground fault trip function

This function eliminates external relays to provide a ground fault protection to TN-C or TN-S power distribution systems on the load side. Ground faault protection on the line side is also available as an option.

- Reverse phase protection function

This function detects the negative-phase current occurring due to reverse phase or phase loss and precents burnout of a motor or damage to equipment.

- Contact temperature monitoring function (optional) $*^{2}$
This function monitors the temperature of the ACBs main contacts. An alarm indicates when the temperature exceeds $155^{\circ} \mathrm{C}$. Continuous monitoring of the contact temperature provides valuable input for preventative and predictive maintenance programs.

- Advanced L.C.D display, Over Current Relay

The AGR-31B OCR comes standard with an LCD display. It can monitor and indicate phase currents, voltages, power, energy, power factor, frequency, and more.
*1: Available for type AGR-22BS, 31BS.
$*^{2}$: Available for type AGR-22B, 31B OCR.

DH series
 Type number nomenclature

Type number nomenclature

DH series Specifications and ratings

- Specifications, standard types

Combination of overcurrent tripping device and indicator

■ Combination of overcurrent tripping device and indicator

Note: *1 Only one function is selectable from PAT2, UV and spring charge indicator.
If you wish to select more than one function, the control circuit will be manually linked special model. Please contact FUJI.
*2 The GF function is not available when the CT rated primary current [IcT] is 200A or less.
*3 When the main circuit voltage exceeds 250 V , a step-down transformer is necessary.
*4 Only one function is selectable from REF, OH, NS, and trip indicator.
If you wish to select more than one function, the control circuit will be manually linked special model. Please contact FUJI.
*5 You can select an R characteristic from the following 5 protective characteristics.

$$
I^{1.02} T \quad I T \quad I^{2} T \quad I^{3} T \quad I^{4} T
$$

*6 Phase current, line voltage, and power can be indicated. See page 08/65 for details.
*7 Overcurrent trip device type

Ordering information

Specify the following:

1. Type number
2. Applied standard
3. Main circuit voltage and breaking capacity
4. Optional accessories for main device and OCR
5. Voltage of each device
6. External accessories

											-Standard O.Opional	
						Output indication				Undervoltage alarm	Field test function	Control power
Reverse power	N-phase protection	Gruond fault on line side	Contact temperature monitoring	Reverse phase protection	Zone interlock	Single contact	Individual contact	Spring charge indicator	Trip indicator *4			
RPT *3	NP	REF *4	$\mathrm{OH} * 4$	NS *4	Z					UV *1*3		
-	\bigcirc	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	Not required
-	\bigcirc	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	Not required
-	\bigcirc	-	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	-	Required
-	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	\bigcirc	-	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	Required
-	-	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required
-	-	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	Required
-	-	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	Required

Note: \bullet When AGR-11B OCR with single-contact indication is activated, the corresponding operation LED indicator is ON momentarily or OFF. But the LED indicator is kept ON when the protection function is checked with the optional OCR checker.

- If the control power is not supplied or is lost, each function operates as follows:

LT, ST, INST, RPT	Operates normally.
GF	Operates normally
	When the CT rated primary current [IcT] is less than
	800 A and the GF pick-up current is set to 10%, the GF becomes inoperative.
MCR	Operates as INST.
PTA 1-channel	Is inoperative.
2-channel	

Characteristics of overcurrent trip device
For general feeder circuit/L-characteristic (Type AGR-11BL, 21BL, 31BL)

___ : Default setting

■ Values of [IcT] and [I_{n}] (for standard connention)

Type	Applicable [lct] (A)	Rated current [In$](\mathrm{A}$)			
		[1cT]	[lct]	[1ct]	[lct]
		X 0.5	X 0.63	X 0.8	X 1.0
DH08	200	100	125	160	200
	400	200	250	320	400
	800	400	500	630	800
DH12	400	200	250	320	400
	800	400	500	630	800
	1250	630	800	1000	1250
DH16	400	200	250	320	400
	800	400	500	630	800
	1250	630	800	1000	1250
	1600	800	1000	1250	1600*

Type	Applicable [Ict] (A)	Rated current [1 l$](\mathrm{A})$			
		[lct]	[lct]	[lct]	[lct]
		X 0.5	X 0.63	X 0.8	X 1.0
DH20	400	200	250	320	400
	800	400	500	630	800
	1250	630	800	1000	1250
	1600	800	1000	1250	1600
	2000	1000	1250	1600	2000
DH25	2500	1250	1600	2000	2500
DH30	3200	1600	2000	2500	3200
DH40	4000	2000	2500	3200	4000 *

* NEMA, ANSi, JIS : Not available.
* NEMA, ANSi : Not available.

- Dimensions, mm

- Draw-out types

DH08, DH12, DH16, DH20

Fixed types
DH08, DH12, DH16, DH20

- Dimensions, mm
- Draw-out types

DH25, DH30

- Fixed types

DH25, DH30

- Dimensions, mm
- Draw-out types

DH40

| Main circuit | CT for
 neutral line |
| :--- | :--- | | Motor charging/ |
| :---: | :---: |
| Operation circuit | | Continuously-
 rated |
| :---: |

Terminal description

Check OCR voltage before connecting.
[02|22] Control power supply AC100-240V, DC100-250V, DC24V, DC48V 12 Operation switch, common
03 ON switch
05 Operation indication terminal, common
15 Single-contact indication
17 Trip indication
27 Spring charge indicator
1020 Continuously-rated shunt trip
19 Separate CT for neutral line (k)
29 Separate CT for neutral line (l)
$08|18| 28$ UVT power supply
09 UVT power supply common

UVT power supply

Term. No.	AC 100 V unit	AC 200V unit	AC 400 V unit
$08-09$	100 V	200 V	380 V
$18-09$	110 V	220 V	415 V
$28-09$	120 V	240 V	440 V

Symbols for accessories

CT1-CT3	: Power CTs
S1-S3	: Current sensors
M	: Charging motor
LRC	: Latch release coil
MHT	: Magnetic Hold Trigger
- $\begin{gathered}\text { Isolati } \\ \text { (for dr }\end{gathered}$	ing terminal connector raw-out type)
- $<$ - Manual	al connector
-- User	wiring
(--- Relay	or indicator lamp

*1: Do not connect "b"contact of auxiliary switch to ON switch in series, otherwise, pumping may occur.
*2: See 08/57 for the circuit diagram of the continuouslyrated shunt trip device with capacitor trip device.
*3: For motor split circuit, terminals 02, 22 and 03, 07 are used for charging and closing operation respectively. (Please specify when ordering)
*4: Refer to D\&C catalog (short pulse only)
Undervoltage trip Position switches Auxiliary switches

Designation of terminals for auxiliary and position switches

1: Common
2: b-contact
4: a-contact
〔 1: Auxiliary switch
2: Position switch (for CONNECTED)
3: Position switch (for TEST)
4: Position switch (for ISOLATED)
5: Position switch (for INSERT)
(1 - 0 : Switch numbers
A, B, C: Auxiliary switches for microload
CONNECTED position : 121-124 ON 121-122 OFF
TEST position : 131-134 ON
ISOLATED position :141-144 ON
: 141-144 ON
141-142 OFF
: 151-154 ON
151-152 OFF
For operation sequence of position switches, see page 16.

- Position switches				
Top	151	141	131	121
Middle	154	144	134	124
Bottom	152	142	132	122
Top	131	121		
Middle	134	124		
Bottom	132	122		

■ Accessories
Supplied accessories

Auxiliary switch (7PDT)

ON - OFF button cover
Position padlock lever
Lifting hole (Draw-out type)
Draw-out handle (Draw-out type)
Optional accessories

- Auxiliary switch (Ratings)

Category	For general use		For microload		
Voltage	Resistive load (A)	Inductive load (A) AC: $\cos \varnothing \geq 0.3$ $D C: L / R \leq 0.01$	Resistive load (A)	Inductive load (A) AC: $\cos \varnothing \geq 0.6$ DC: $L / R \leq 0.007$	Min. applicable load
100 to 250VAC	5	5	0.1	0.1	5VDC
251 to 500VAC	5	5	-	-	1 mA
30VDC	1	1	0.1	0.1	
125 to 250VDC	1	1	-	-	

Notes: The chattering of NC-contacts due to ON - OFF operation of the ACB lasts for less than 20 ms . Do not supply different voltages to contacts of switch.

- Auxiliary switch arrangement

For general use	For microload
4PDT	-
4PDT	$3 P D T$
10PDT	-
7PDT	3 3DT

Contact ratings of Trip indicator and Spring change indicator

Voltage (V)	Switch contact ratings (A)	
	Resistive load	Inductive load
250 AC	3	3
250 DC	0.1	0.1
125 DC	0.5	0.5
30 DC	3	3

- Capacitor trip device

Item	Specifications
Type	AQR-1
Rated voltage	100 to 120VAC
Operational voltage	Rated voltage X 70 to 110\%
Rated frequency	$50 / 60 \mathrm{~Hz}$
Rated voltage of shunt trip used	48 VDC
Power consumption	100 VA

\square Contact ratings other contacts

Voltage (V)	Current (A)			
	Single contact		Individual contacts	
	Resistive load	Inductive load	Resistive load	Inductive load
250 AC	8	3	0.5	0.2
250 DC	0.3	0.15	0.27	0.04
125 DC	0.5	0.25	0.5	0.2
30 DC	5	3	2	0.7

Position switch

- Position switch ratings

Voltage	Resistive load (A)	Inductive load (A) $(\cos \varnothing \geq 0.6, L / R \leq 0.007)$
100-250V AC	11	6
250 V DC	0.3	0.3
125V DC	0.6	0.6
30V DC	6	5
8V DC	10	6

Type	Number of Contact arrangement				
		INSERT	ISOLATED	TEST	CONN
ALR-0110P		0	1	1	0
ALR-0101P		0	1	0	1
ALR-0011P	2PDT	0	0	1	1
ALR-0200P	2PDT	0	2	0	0
ALR-0020P		0	0	2	0
ALR-0002P		0	0	0	2
ALR-1111P		1	1	1	1
ALR-1210P		1	2	1	0
ALR-1201P		1	2	0	1
ALR-0211P		0	2	1	1
ALR-1120P		1	1	2	0
ALR-1021P		1	0	2	1
ALR-0121P		0	1	2	1
ALR-1102P		1	1	0	2
ALR-1012P	4PDT	1	0	1	2
ALR-0112P		0	1	1	2
ALR-0220P		0	2	2	0
ALR-0202P		0	2	0	2
ALR-0022P		0	0	2	2
ALR-1030P		1	0	3	0
ALR-0130P		0	1	3	0
ALR-0031P		0	0	3	1
ALR-1003P		1	0	0	3
ALR-0103P		0	1	0	3
ALR-0013P		0	0	1	3
ALR-0040P		0	0	4	0
ALR-0004P		0	0	0	4

\. Safety Considerations

- For safe operation, before using the product read the instruction manual or user manual that comes with the product carefully or consult the Fuji sales representative from which you purchased the product.
- Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives.
- Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, passenger vehicle, and traffic control, are requested to consult the Fuji sales division.
- Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.
- For safe operation, wiring should be conducted only by qualified engineers who have sufficient technical knowledge about electrical work or wiring.

Fuji Electric FA Components \& Systems Co., Ltd.

5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan
URL http://www.fujielectric.co.jp/fcs/eng

[^0]: Note: If the ACB is DH-H type or DH-P type without INST trip/MCR function, the rated breaking capacity will decrease down to the rated latching current.

