

YASKAWA AC Drive High Performance Vector Control A 1000

200 V CLASS, 0.4 to 110 kW 400 V CLASS, 0.4 to 630 kW

The Birth of Yaskawa's Ace Drive

Offering limitless possibilities....

A top quality drive: silent, beautiful, and incredibly powerful. Perfectly designed functions open a new field with A1000. A product only possible from Yaskawa, knowing everything there is to know about the world of drive technology to create the most efficient operation possible with an inverter drive. You just have to try it to know how easy it is to use. High level, Yaskawa quality. Integrating the latest vector control technology in a general-purpose drive with the performance of a higher order demanded by the drives industry. A1000 is the answer to user needs, carrying on the Yaskawa traditions of absolute quality in this next generation product line.

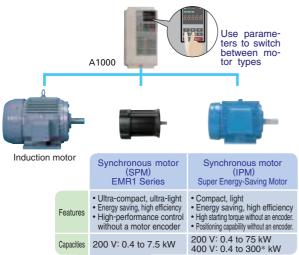
The Answer is A1000

Contents

Features	4
Features for Every Application	10
Product Lineup	14
Model Selection	15
Software Functions	16
Parameter List	18
Basic Instructions	24
Standard Specifications	26
Standard Connection Diagram	28
Dimensions	30
Fully-Enclosed Design	32
Peripheral Devices and Options	34
Application Notes	58
YASKAWA AC Drive Series	64
Olahal Osasisa Natarad	0.5

The Drive for a Greener World

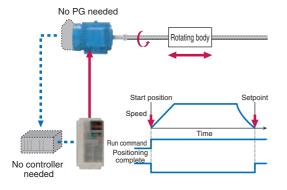
Motor Drive Performance Leading the Pack



Motor Drive Performance Leading the Pack

The Most Advanced Drive Technology

- Capable of driving any kind of motor.
 - A1000 runs not only induction motors, but also synchronous motors like IPM and SPM motors with high performance current vector control.
 - Currently developing PM motor compatibility for drives 450 kW and above.
- Minimize equipment needed for your business by using the same drive to run induction and synchronous motors.
- Switch easily between motor types with a single parameter setting.



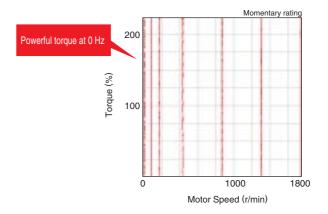
* 160 kW without PG

Rotor Positioning without Motor Encoder

- Use an IPM motor to perform position control without motor feedback.
 - Electrical saliency in IPM motors makes it possible to detect speed, direction, and rotor position without the use of a motor encoder.
- Precision positioning functionality without an upper controller.

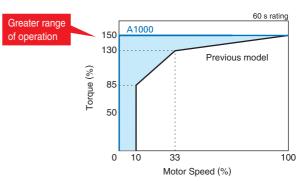
Visual programming in DriveWorksEZ lets the user easily create a customized position control sequence, without the use a motor encoder.

Cutting-Edge Torque Characteristics


- Powerful torque at 0 Hz, without a motor encoder* Once out of reach for AC drives, Yaskawa now offers advanced control features without a motor encoder. Achieve even more powerful starting torque at zero speed with an IPM motor.
 - * No speed sensors or pole sensors required.

Synchronous Motor

- Advanced Open Loop Vector Control for PM 200% rated torque at 0 r/min*, speed range of 1:100
- Closed Loop Vector Control for PM 200% rated torque at 0 r/min*, speed range of 1:1500
 - * Achieving this torque output requires a larger capacity drive.


Torque characteristics

Advanced Open Loop Vector Control for PM with an IPM motor

Comparing the speed control range

Advanced Open Loop Vector Control for PM with an IPM motor

 ∐ High-performance current vector control achieves powerful starting torque with an induction motor.

Induction Motor

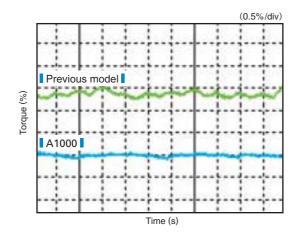
- Open Loop Vector Control 200% rated torque at 0.3 Hz*, speed range of 1:200
- Closed Loop Vector Control 200% rated torque at 0 r/min*, speed range of 1:1500

Loaded with Auto-Tuning Features

- Auto-Tuning features optimize drive parameters for operation with induction motors as well as synchronous motors to achieve the highest performance levels possible.
- Perfects not only the drive and motor performance, but also automatically adjusts settings relative to the connected machinery.
 - A variety of ways to automatically optimize drive settings and performance

Tuning the	Motor			
Rotational	Applications requiring high starting torque, high			
Auto-Tuning	speed, and high accuracy.			
Stationary	Applications where the motor must remain con-			
Auto-Tuning	nected to the load during the tuning process.			
Line-to-Line	For re-tuning after the cable length between			
Resistance	the motor and drive has changed, or when			
Auto-Tuning	motor and drive capacity ratings differ.			
Energy-Saving	For running the motor at top efficiency all the			
Auto-Tuning	time.			

Tuning the	Load
Inertia Tuning	Optimizes the drive's ability to decelerate the load. Useful for applications using KEB and Feed Forward functions.
ASR Gain Auto-Tuning * Automatic Speed Regulator	Automatically adjusts ASR gain to better match the frequency reference.


Note: Not available in models 450 kW and above.

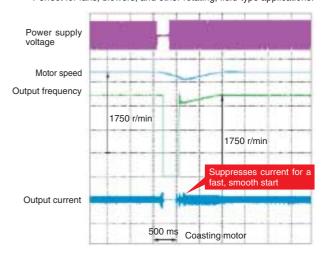
▲ Brand-new Auto-Tuning methods.

A1000 continuously analyzes changes in motor characteristics during run for highly precise speed control.

Smooth Operation

- Smooth low speed operation thanks to even better torque ripple suppression.
 - Comparing torque ripple at zero speed (Closed Loop Vector)

Tackling Power Loss and Recovery

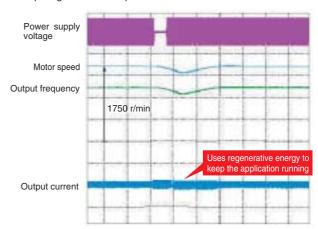

- A1000 offers two ways to handle momentary power loss.
- A1000 is capable of handling momentary power loss for induction motors as well as synchronous motors—without the use of a motor encoder.

Speed Search

Easily find the speed of a coasting motor for a smooth restart.

Applications

Perfect for fans, blowers, and other rotating, fluid-type applications.



KEB

Keep the motor running without allowing it to coast.

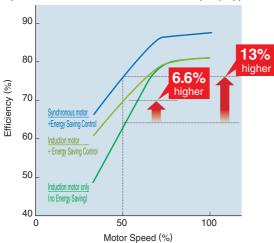
Applications

Highly recommended for film lines and other applications requiring continuous operation.

Note: Requires a separate sensor to detect power loss.

The drive may trip depending on load conditions, and the motor coast to stop.

- Ride through power loss for up to 2 seconds.*
 - · Crucial for semi-conductor manufacturers
 - · No need to purchase a back-up power supply
 - Detects, outputs an undervoltage signal during power loss
 - * The Momentary Power Loss Recovery Unit option may be required depending on the capacity of the drive.


Energy Saving

Next-Generation Energy Saving

- ▲ Loaded with the most advanced energy-saving control technology* Energy Saving control makes highly efficient operation possible with an induction motor.
 - * Not available in models 450 kW and above.
- Amazing energy saving with a synchronous motor*
 Combining the high efficiency of a synchronous motor along with A1000's
 Energy Saving control capabilities allows for unparalleled energy saving.

 * Not available in models 450 kW and above.
 - Efficiency using a motor drive

Example shows a 200 V 3.7 kW drive in a fan or pump application.

Examples of energy saving with drives

Conditions

A: Induction motor + A1000

B: IPM motor + A1000

Annual energy savings for an HVAC fan application running 100 3.7 kW motors. Electric costs of 15 cents/kWH, operating 365 days/year

Annual Energy Savings

A: Induction motor + A1000 Power consumption: 1,903,100 kWH Electrical costs: \$285,500

B: IPM motor + A1000

Power consumption: 1,754,600 kWH

Electrical costs: \$263,200

Annual savings on energy costs: (A) vs. (B)
Energy saved: 148,500 kWH
Electrical costs: \$22,300

Annual reduction in CO₂

148,500 kWH×0.555÷1,000 = **82.4 tons!**Assumes 1 kWH of power consumed creates 0.555 kg/kWH of CO₂

Environmental Features

Protective Design

- A variety of protective designs are available to reinforce the drive against moisture, dust, oil mist, vibration, corrosive sulfur gas, conductive particles, and other harsh environments.
- IP54 drip-proof and dustproof options are also offered.*

* Available soon

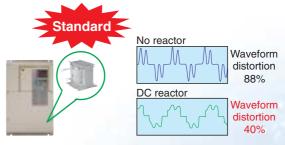
RoHS

All standard products are fully compliant with the EU's RoHS directive.

RoHS

compliant

Noise Reduction


- A1000 uses Yaskawa's Swing PWM function* to suppress electromagnetic and audible motor noise, creating a more peaceful environment.
 - * Not available in models 450 kW and above.
 - Comparing our former product line with our new Swing PWM feature

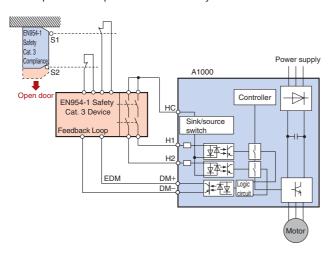
Note: Calculated by comparing peak values during noise generation

Suppressing Power Supply Harmonics

A DC reactor minimizes harmonic distortion, standard on drives 22 kW and above.

- Optional features available soon for compatibility with 12-pulse and 18-pulse rectifiers.*
 - * Requires a separate 3-winding or 4-winding transformer.
- Filter option available soon to suppress harmonic distortion.

Safety

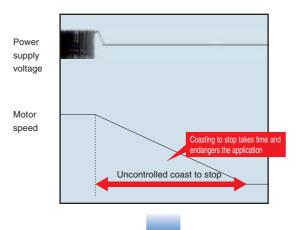

Safety Regulations

- ▲ All models have a Safe Disable function to stop the motor in accordance with EN954-1 safety category 3, IEC/EN61508 SIL2 requirements.
- An External Device Monitor (EDM) function has also been added to monitor the safety status of the drive.
 - Safe Disable example: Door switch circuit

A1000 is equipped with 2 input terminals and a single output terminal for connecting a safe disable device.

Input: Triggered when either terminal H1 or H2 opens.

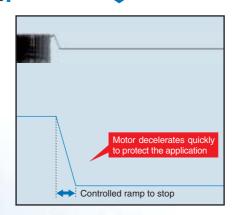
Output: EDM output monitors the safety status of the drive.


Controlled Stop Despite Power Loss

- ▲ Should a power outage occur, A1000 can bring the application to controlled stop quickly and safely using the KEB function.*
 - * Under development for models 450 kW and above.
 - Quickly ramp to stop with KEB function

Applications

Perfect for spindle drive application and film production lines where stopping methods are crucial to the application to reduce production cost.

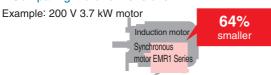

Previous model

A1000

Power supply voltage

Motor speed

Transforming the Application Installation with Unparalleled Performance


Even More and More Compact

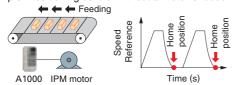
- Yaskawa continues to make applications even smaller by combining the world's smallest drive in its class with the light, efficient design of a synchronous motor.
 - Comparing drive dimensions

Example: 400 V Class 75 kW

Comparing motor dimensions

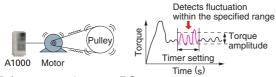
- ✓ Use Side-by-Side installation* for an even more compact setup.
 * For models up to 18.5 kW.
- Finless models* also available.

* For release soon


Customize Your Drive

DriveWorksEZ visual programming tool with all models

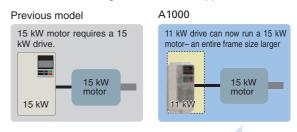
Simply drag and drop icons to completely customize your drive. Create special sequences and detection functions, then load them onto the drive.


Program a customized sequence

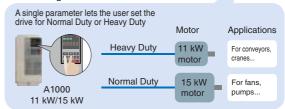
Example: Positioning control without a motor encoder

Create customized detection features

Example: Machine weakening analysis using torque pulse detection



- USB for connecting to a PC
 - USB port lets the drive connect to a PC



Note: Drives are also equipped with an RJ-45 comm. port that takes the existing WV103 cable used in Yaskawa's previous models. Simply remove the operator keypad for to the RJ-45 connector.

- Dual Rating allows for an even more compact setup Each drive lets the user choose between Normal Duty or Heavy Duty operation. Depending on the application, A1000 can run a motor an entire frame size larger than our previous model.
 - Select the drive rating that best fits the application needs

Dual Ratings in A1000

Note: Always select a drive with a current rating greater than the motor rated current.

Breeze-Easy Setup

Immediate setup with Application Presets

A1000 automatically sets parameters needed for most major applications. Simply selecting the appropriate application instantly optimizes the drive for top performance, saving enormous time setting up for a trial run.

Example using Application Presets

Selecting "Conveyor" optimizes five parameter settings so the drive is ready to start running your conveyor application immediately.

Setting	Applica	tion		ı		
00	General-pur	rpose			Parameters are	programmed automatically
01	Water Supply	/ Pump			A1-02	Control mode selection
02	Conveyor		-		C1-01	Accel Time 1
03	Exhaust Fa	n			01 01	Accel Time I
04	HVAC Fan				C1-02	Decel Time 1
05	Air Compres	ssor			C6-01	ND/HD Selection
06	Crane (Hois	st)		J		
07	Crane (Trav	rerse)				

Setting

0

Variety of Braking Functions

- Overexcitation deceleration brings the motor to an immediate stop without the use of a braking resistor.
- All models up to 30 kW are equipped with a braking transistor for even more powerful braking options by just adding a braking resistor.

All Major Serial Network Protocols

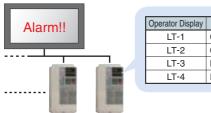
- RS-422/485 (MEMOBUS/Modbus at 115.2 kbps) standard on all models.
- Option cards available for all major serial networks used across the globe: PROFIBUS-DP, DeviceNet, CC-Link, CANopen, LONWORKS*, MECHATRO-LINK-II, among others.

* Available soon Note: Registered trademarks of those companies.

Less wiring and space-saving features make for easy installation and maintenance.

Long Life Performance

Ten Years of Durable Performance


- Cooling fan, capacitors, relays, and IGBTs have been carefully selected and designed for a life expectancy up to ten years.*
 - $*$ Assumes the drive is running continuously for 24 hours a day at 80% load with an ambient temperature of 40°C.

Motor Life

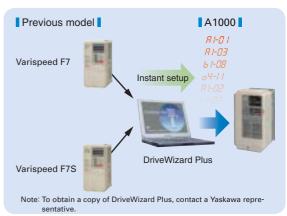
Thanks to relatively low copper loss in the rotor and a cool shaft during operation, synchronous motors have a bearing life twice that of induction motors.

Performance Life Monitors

- Yaskawa's latest drive series is equipped with performance life monitors that notify the user of part wear and maintenance periods to prevent problems before they occur.
 - Drive outputs a signal to the control device indicating components may need to be replaced

Coperator Display Corresponding Component LT-1 Cooling fan LT-2 Capacitors LT-3 Inrush prevention relay LT-4 IGBTs

Easy Maintenance


The First Terminal Board with a Parameter Backup Function

- The terminal block's ability to save parameter setting data makes it a breeze to get the application back online in the event of a failure requiring drive replacement.
 - A1000 Terminal Block

Engineering Tool DriveWizard Plus

- Manage the unique settings for all your drives right on your PC.
- An indispensable tool for drive setup and maintenance. Edit parameters, access all monitors, create customized operation sequences, and observe drive performance with the oscilloscope function.
- The Drive Replacement feature in DriveWizard Plus saves valuable time during equipment replacement and application upgrades by converting previous Yaskawa product parameter values to the new A1000 parameters automatically.
 - Drive Replacement Function

Parameter Copy Function

- All standard models are equipped with a Parameter Copy function using the keypad that allows parameter settings to be easily copied from the drive or uploaded for quick setup.
- A USB Copy Unit is also available as an even faster, more convenient way to back up settings and instantly program the drive.

Features for Every Application

A1000 is loaded with functions to match the particular needs of every application.

Cranes

1 Application Presets

Selecting "Crane" from A1000's Application Presets automatically programs A1000 for optimal performance with a crane application. Save valuable setup time and start running immediately.

Switch Between Motors

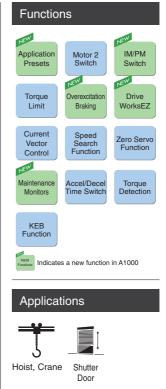
Use the same drive to control one motor for hoisting, another motor for traverse operation. Terminal inputs let the user set up a relay to switch back and forth between motors.

3 Powerful Starting Torque

Powerful torque at low speeds ensures the power needed for the application and prevents problems with slipping.

4 Safety Functions

The Safe Disable function comes standard for compliance with various safety regulations.


5 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

6 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

Fans and Pumps

1 Application Presets

Selecting "Fan" or "Pump" from A1000's Application Presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.

2 Compact Design

Yaskawa offers a compact solution for both drive and motor.

- · Dual ratings
- Selecting Normal Duty makes it possible to use a smaller drive.
- · Combine with a synchronous motor
- Run a synchronous motor instead of an induction motor for an even more compact installation.

3 Astounding Efficiency

Combine A1000 with a synchronous motor and save on energy costs.

∆ Output Power Pulse Monitor

Pulse output feature can send a signal to the PLC to keep track of kilowatt hours. No extra power meter needed.

Note: Cannot legally be used as proof of power consumption.

5 Speed Search

Yaskawa's unique speed search functions easily carry the motor through momentary power loss. No back-up power supply needed to keep the entire application running smoothly.

6 24 V Control Power Supply Option

Lets the user monitor drive data from a PLC even when the power goes out.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

8 Performance Life Diagnostic Features

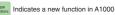
A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

9 Low Harmonic Distortion

DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves space and wiring.

Functions

WorksEZ



Applications

HVAC

Fan

Pump

Features for Every Application

A1000 is loaded with functions to match the particular needs of every application.

Metal Working

1 KEB Function

The KEB function can quickly decelerate the motor to stop in case of a power outage, rather than putting equipment at risk by simply allowing the motor to coast. Easy to program to match application needs.

2 Overvoltage Suppression

Particularly beneficial for die cushion and other press-type machinery, overvoltage suppression prevents faults and keeps the application running.

3 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

4 Safety Functions

Safe Disable feature comes standard for compliance with various safety regulations.

5 Current Vector Control

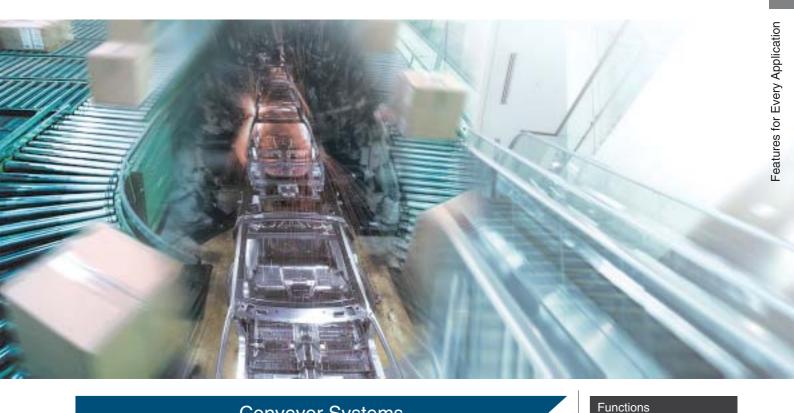
Protect connected machinery by controlling torque directly through torque detection and torque limits offered by current vector control.

6 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.


Functions KEB Function Overexcitation Braking Fault Restart Overvoltage Suppression Overload Fault Prevention Overload Fault Prevention Overload Fault Prevention Maintenance Monitors Drive WorksEZ Indicates a new function in A1000 Applications

Press

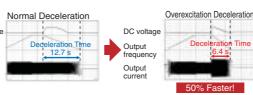
Machine Tool

Conveyor Systems

1 Application Presets

Selecting "Conveyor" from A1000's Application Presets presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.

2 Safety Functions


Safe Disable feature comes standard for compliance with various safety regulations.

Astounding Efficiency

Combine A1000 with a synchronous motor to save on energy costs. Save further but still maintain high performance by eliminating the motor encoder.

4 Overexcitation **Braking**

DC voltage Bring the motor to an Output frequency immediate stop without Output the use of a braking re- current sistor (IM motors only).

Note: Varies in accordance with motor specifications and load.

Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

24 V Control Power Supply Option Lets the user monitor drive data from a PLC even when the main power is removed.

7 Verify Menu

Quickly reference any settings that have been changed from their original default values.

Changeu van	Je		
Name	Parameter	Default	Set Value
Frequency Ref. Selection1	b1-01	1	0
Acceleration Time1	C1-01	10.00 s	15.00 s
Deceleration Time1	C1-02	10.00 s	15.00 s
·	. :	:	

8 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

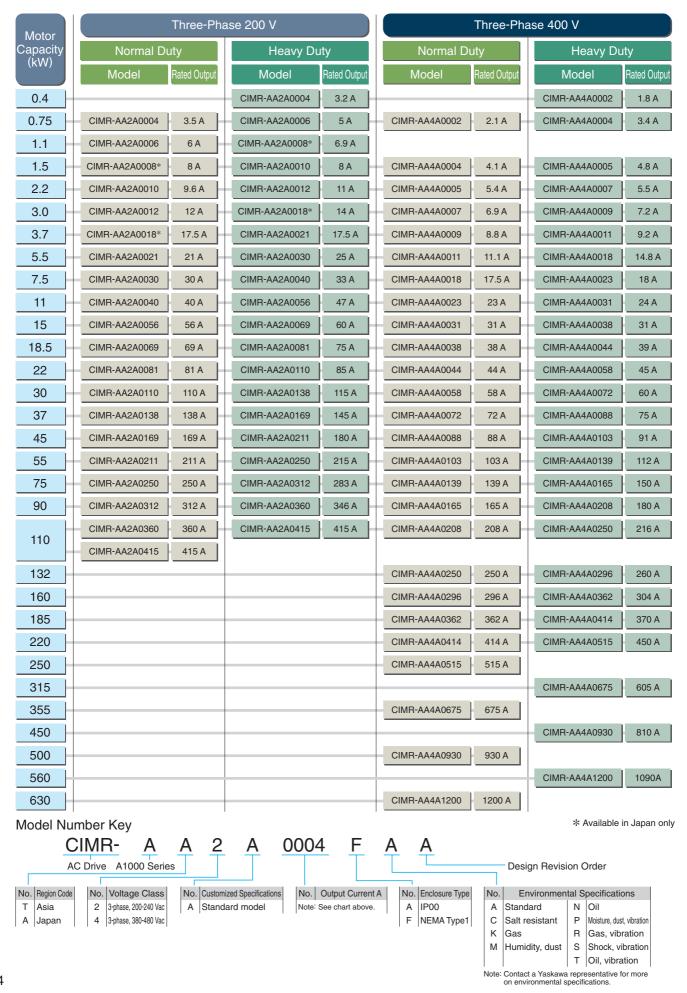
9 Low Harmonic Distortion

DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves space and wiring.

Drive Application Presets WorksEZ PID Braking Control Limit Zero Servo Function NEW IM/PM Switch Torque Detection

Indicates a new function in A1000

Monitors


Applications

Tuning

Conveyor

Product Lineup

Optimizing Control for Each Application

A1000 offers two separate performance ratings: Normal Duty and Heavy Duty.

Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.

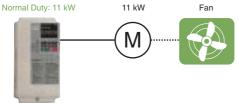
Difference between load ratings:

	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01=1	C6-01=0 (default)
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PWM)*	Low carrier frequency

[★] Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency. Not available in models 450 kW and above.

Normal Duty Applications

Applications



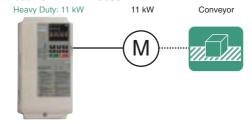
Selecting a Drive

For a fan application using a 11 kW motor, select CIMR-AA2A0040 and set it for Normal Duty performance (C6-01 = 1).

Model: CIMR-AA2A0040

Heavy Duty Applications

Applications



Selecting a Drive

For a conveyor application using an 11 kW motor, select CIMR-AA2A0056 and set it for Heavy Duty performance (default).

Model: CIMR-AA2A0056

Use the table below to transition from Varispeed F7 and Varispeed F7S to the A1000 series.

Po	wer Supply		200 V		400 V			
	Maralal	Varispeed F7	Varispeed F7S	A1000	Varispeed F7	Varispeed F7S	A1000	
	Model	CIMR-F7A2[[[[]]]]	CIMR-F7S2[[[[]]]]	CIMR-AA2A[[#[#]#]]	CIMR-F7A4[[X]X]	CIMR-F7S4[[#[]]]	CIMR-AA4A([#[#]#]	
Арр	licable Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor	
	0.4	0P4	0P4	0004	0P4	0P4	0002	
	0.75	0P7	0P7	0006	0P7	0P7	0004	
	1.5	1P5	1P5	0010	1P5	1P5	0005	
	2.2	2P2	2P2	0012	2P2	2P2	0007	
	3.7	3P7	3P7	0021	3P7	3P7	0011	
	5.5	5P5	5P5	0030	5P5	5P5	0018	
Applicable Motor Capacity (kW)	7.5	7P5	7P5	0040	7P5	7P5	0023	
>	11	011	011	0056	011	011	0031	
acit	15	015	015	0069	015	015	0038	
Sap	18.5	018	018	0081	018	018	0044	
or 0	22	022	022	0110	022	022	0058	
Mot	30	030	030	0138	030	030	0072	
l e	37	037	037	0169	037	037	0088	
icat	45	045	045	0211	045	045	0103	
ppl	55	055	055	0250	055	055	0139	
\ \.	75	075	075	0312	075	075	0165	
Мах.	90	090	-	0360	090	090	0208	
	110	110	-	0415	110	110	0250	
	132	-	-	-	132	132	0296	
	160	-	-	-	160	160	0362	
	185	-	-	-	185	220	0414	
	220	_	_	_	220	300	0515	
	315	-	-	-	300	300	0675	

Software Functions

Loaded with software functions just right for your application.

New software available to upgrade from F7 to A1000, automatically matching function and sequence settings.

Note: Major functions listed below

No need to struggle with difficult parameters and complex calculations. Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Optimal deceleration without needing to set the deceleration time.

Drive slows the application smoothly controlling DC bus voltage.

Perfect for applications with high load inertia that rarely need to be stopped. Stop quickly: 50% faster without the use of a braking resistor.

Note: Stopping times may vary based on motor characteristics.

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without using a motor encoder.

Accelerate and decelerate smoothly with large inertia loads.

Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.

Switch easily between accel/decel times. Switch acceleration and deceleration rates when running two motors from the same drive, or assign specific accel/decel rates when operating at high speed or at low speed.

Reference Functions

Limit motor speed.

Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

Skip over troublesome resonant frequencies. Drive can be programmed to avoid machine resonance problems by avoiding constant speed operation at certain speeds.

Improved operability.

Momentarily hold the operating frequency during acceleration or deceleration as the load is lowered or raised.

Balances the load automatically between motors.

Calculates the ratio of the load torque and adjusts motor speed accordingly.

Functions for Top Performance

Run both IM and PM motors with a single drive. The most advanced motor drive technology can run both IM and PM motors*, allowing for even greater energy savings and a more compact setup.

* Currently developing PM motor compatibility for drives 450 kW and above.

No extra watt hour meter needed.

A pulse output lets the user monitor power consumption.*

* Cannot legally be used as proof of power consumption.

Automatically runs at top efficiency.*

The drive supplies voltage to the motor relative to the speed and load so that the application is for operating at the most efficient level.

Enables high-precision operation.

Automatically adjusts resistance between motor conductors during operation, thus improving speed accuracy when there are motor temperature fluctuations. This function is active only for Open Loop Vector Control.

Achieve high levels of performance.

The drive comes with current vector control capabilities for high performance applications.

Customize the perfect drive to fit your needs. Upper controller circuitry and drive I/O terminals can be programmed so that extra hardware is no longer needed. Dragand-drop. Visual programming makes customization a breeze.

Automatic PID control.

The internal PID controller fine-tunes the output frequency for precise control of pressure, flow, or other variables.

One drive runs two motors.

Use a single drive to operate two different motors. Only one PM motor may be used.

Improved operability.

Use the Pulse Train Input to control not only the frequency reference, but also PID feedback and PID input.

Improved monitor functions.

Pulse output lets the user observe everything from the frequency reference and output frequency to motor speed, softstart output frequency, PID feedback, and PID input.

Torque Detection

Protects the load and helps ensure continuous operation.

An output terminal is triggered when motor torque rises above or falls below a specified level. Useful as an interlock signal for protecting equipment when blade problems arise in a machine tool application or for detecting a broken belt.

Torque Limit

Better reliability: Keep the application running while protecting the load.

A1000 helps protect your application by restricting the amount of torque the motor can create.

Torque Control

Freely adjust torque levels with an external reference signal.

Perfect for tension control in winders and assisting torque followers.

Feed Forward Control

Optimizes speed changes when working with high-inertia loads.

Estimates the acceleration/deceleration torque required for the change in speed, and then recalculates the torque reference.

Automatically optimize ASR settings for superior responsiveness.* Optimizes the drive's ability to decelerate the load. Useful for applications using

KEB and Feed Forward functions.

* Not available in models 450 kW and above.

Speed Search Function

Automatically switches to line power.

Switches operation between line power and inverter drive operation without stopping the motor.

Timer Function

No need for extra hardware.

Control timing by opening and closing the output signal relative to the input signal.

Locks the motor at zero speed.

Holds the motor solidly at 0 Hz, regardless of external influences on the load.

Set the carrier frequency to best match application needs.

Reduces noise and resonance in the both the motor as well as the mechanical system. The Swing PWM feature* can be used to minimize audible motor noise.

* Not available in models 450 kW and above.

Keeps the application running.

Maintains continuous operation even if the controller fails or frequency reference is lost. An indispensable feature for large HVAC applications.

Keep running when a fault occurs.

A1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

Protective Functions

Keep running even during a momentary loss in power.

A1000 automatically restarts the motor and keeps the application going in the event of a power loss.

Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Prevents overload faults to keep the application running at all times.

Ensures continuous operation during sudden changes in the load that may briefly rise above overload levels and would otherwise shut the application down.

Monitor actual speed of the motor and load.

Monitors let the user keep track of motor rotations and line speed.

Save parameter setting to the digital operator.

Copy all parameter settings to the operator keypad, and then transfer those settings to another drive. Saves valuable setup and maintenance time.

Notifies the user when maintenance may be required.

An output signal is triggered when certain components such as the cooling fan or capacitors are nearing their expected performance life.

Decelerate to stop when the power goes out.*

A1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast.

 $\ensuremath{\bigstar}$ Currently under development for models 450 kW and above.

Parameter List

Refer to the A1000 Technical Manual for details.

Function	No.	Name	Range	Default	Changes during Ru
ပ	A1-00	Language Selection	0 to 7	1*1	0
User Parameters Initialization Parameters	A1-01	Access Level Selection	0 to 2	2*2	0
ä	A1-02	Control Method Selection	0,1,2,3,5,6,7*9	2*1	×
⁵ ar	A1-03	Initialize Parameters	0 to 5550	0	×
Ä.	A1-04	Password	0 to 9999	0	×
atic					
ij	A1-05	Password Setting	0 to 9999	0	×
ij	A1-06	Application Preset	0 to 7	0	×
=	A1-07	DWEZ Function Selection	0 to 2	0	×
ers	A2-01		b1-01 to		
net	to	User Parameters, 1 to 32		*2	×
arar	A2-32		o2-08		
9,					
Jse	A2-33	User Parameter Automatic Selection	0, 1	1*2	×
	h d Od	Farance Defended Only No.	0.4- 4	-	
	b1-01	Frequency Reference Selection 1	0 to 4	1	×
	b1-02	Run Command Selection 1	0 to 3	1	×
.o	b1-03	Stopping Method Selection	0 to 3*3	0	×
ect	b1-04	Reverse Operation Selection	0, 1	0	×
Sel	b1-05	Action Selection below Minimum Output Frequency	0 to 3	0	×
ě	b1-06	Digital Input Reading	0, 1	1	×
ا ا	b1-00				
<u>ا</u> ي		LOCAL/REMOTE Run Selection	0, 1	0	×
Operation Mode Selection	b1-08	Run Command Selection while in Programming Mode	0 to 2	0	×
ere	b1-14	Phase Order Selection	0, 1	0	×
g	b1-15	Frequency Reference Selection 2	0 to 4	0	×
-	b1-16	Run Command Selection 2	0 to 3	0	×
ì	b1-17	Run Command at Power Up	0, 1	0	×
		'			×
g Ė	b2-01	DC Injection Braking Start Frequency	0.0 to 10.0	*3	
돌혈	b2-02	DC Injection Braking Current	0 to 100	50%	×
Injection B Short Circuit	b2-03	DC Injection Braking Time at Start	0.00 to 10.00	0.00 s	×
	b2-04	DC Injection Braking Time at Stop	0.00 to 10.00	*3	×
	b2-08	Magnetic Flux Compensation Capacity	0 to 1000	0%	×
	b2-12	Short Circuit Brake Time at Start	0.00 to 25.50	0.00 s	×
	b2-13		0.00 to 25.50		×
		Short Circuit Brake Time at Stop		0.50 s	
α	b2-18	Short Circuit Braking Current	0.0 to 200.0	100.0%	×
	b3-01	Speed Search Selection at Start	0, 1	*3	×
	b3-02	Speed Search Deactivation Current	0 to 200	*3	×
	b3-03	Speed Search Deceleration Time	0.1 to 10.0	2.0 s	×
	b3-04	V/f Gain during Speed Search	10 to 100	*4	×
ج					
Speed Search	b3-05	Speed Search Delay Time	0.0 to 100.0	0.2 s	×
Se	b3-06	Output Current 1 during Speed Search	0.0 to 2.0	*4	×
be e	b3-10	Speed Search Detection Compensation Gain	1.00 to 1.20	1.05	×
be	b3-14	Bi-Directional Speed Search Selection	0, 1	*3	×
တ	b3-17	Speed Search Restart Current Level	0 to 200	150%	×
		·			
	b3-18	Speed Search Restart Detection Time	0.00 to 1.00	0.10 s	×
ļ	b3-19	Number of Speed Search Restarts	0 to 10	3	×
	b3-24	Speed Search Method Selection	0, 1	0	×
	b3-25	Speed Search Wait Time	0.0 to 30.0	0.5 s	×
ay er	b4-01	Timer Function On-Delay Time	0.0 to 3000.0	0.0 s	×
Delay	b4-02	Timer Function Off-Delay Time	0.0 to 3000.0	0.0 s	×
	b5-01	PID Function Setting	0 to 4	0	×
		PID Function Setting	0 to 4		
ļ	b5-02		0.00 to 25.00	1.00	0
ļ	b5-03	Integral Time Setting (I)	0.0 to 360.0	1.0 s	0
	b5-04	Integral Limit Setting	0.0 to 100.0	100.0%	0
	b5-05	Derivative Time (D)	0.00 to 10.00	0.00 s	0
_	b5-06	PID Output Limit	0.0 to 100.0	100.0%	0
tro	b5-07	PID Offset Adjustment	-100.0 to 100.0	0.0%	
o		•			0
0	b5-08	PID Primary Delay Time Constant	0.00 to 10.00	0.00 s	
PID Control	b5-09	PID Output Level Selection	0, 1	0	×
-	b5-10	PID Output Gain Setting	0.00 to 25.00	1.00	×
	b5-11	PID Output Reverse Selection	0, 1	0	×
	b5-12	PID Feedback Loss Detection Selection	0 to 5	0	×
	b5-13	PID Feedback Low Detection Level	0 to 100	0%	×
ļ	b5-14	PID Feedback Low Detection Time	0.0 to 25.5	1.0 s	×
	b5-15	PID Sleep Function Start Level	0.0 to 400.0	0.0 Hz	×

Function	No.	Name	Range	Default	Changes during Run
	b5-16	PID Sleep Delay Time	0.0 to 25.5	0.0 s	×
	b5-17	PID Accel/Decel Time	0 to 6000.0	0.0 s	×
	b5-18	PID Setpoint Selection	0, 1	0	×
	b5-19	PID Setpoint Value	0.00 to 100.00	0.00%	×
	b5-20	PID Setpoint Scaling	0 to 3	1	×
PID Control	b5-34	PID Output Lower Limit	-100.0 to 100.0	0.0%	0
ပိ	b5-35	PID Input Limit	0.0 to 1000.0	1000.0%	0
유	b5-36	PID Feedback High Detection Level	0 to 100	100%	×
"	b5-37	PID Feedback High Detection Time	0.0 to 25.5	1.0 s	×
	b5-38	PID Setpoint User Display	1 to 60000	dep. on	×
	b5-39	PID Setpoint Display Digits	0 to 3	b5-20	×
	hE 40	Frequency Reference Monitor	0.1	_	
	b5-40	Content during PID	0, 1	0	×
ion	b6-01	Dwell Reference at Start	0.0 to 400.0	0.0 Hz	×
Dwell Function	b6-02	Dwell Time at Start	0.0 to 10.0	0.0 s	×
E	b6-03	Dwell Frequency at Stop	0.0 to 400.0	0.0 Hz	×
Dwe	b6-04	Dwell Time at Stop	0.0 to 10.0	0.0 s	×
요요	b7-01	Droop Control Gain	0.0 to 100.0	0.0%	0
Droop	b7-02	Droop Control Delay Time	0.03 to 2.00	0.05 s	0
	b8-01	Energy Saving Control Selection	0, 1	*3	×
.,,,	b8-02	Energy Saving Gain	0.0 to 10.0	*3	0
*8 D		Energy Saving Control Filter Time			
Energy Saving	b8-03	Constant	0.00 to 10.00	*2	
Ss				*4	
rgy	b8-04	Energy Saving Coefficient Value	0.00 to	dep. on	×
l ine	50 04	Energy daving docincient value	655.00	E2-11	
"	b8-05	Power Detection Filter Time	0 to 2000		×
	b8-06		0 to 2000	20 ms	×
		Search Operation Voltage Limit	0 to 100	0%	
Zero Servo	b9-01	Zero Servo Gain	0 to 100	5	×
S VI	b9-02	Zero Servo Completion Width	0 to 16383	10	X
es	C1-01	Acceleration Time 1	0.0 to 6000.0*2	10.0 s	0
≟	C1-02	Deceleration Time 1	0.0 to 6000.0*2	10.0 s	0
ion	C1-03	Acceleration Time 2	0.0 to 6000.0*2	10.0 s	0
erat	C1-04	Deceleration Time 2	0.0 to 6000.0*2	10.0 s	0
ecel	C1-05	Acceleration Time 3 (Motor 2 Accel Time 1)	0.0 to 6000.0*2	10.0 s	0
ğ	C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)	0.0 to 6000.0*2	10.0 s	0
auc	C1-07	Acceleration Time 4 (Motor 2 Accel Time 2)	0.0 to 6000.0*2	10.0 s	0
tion	C1-08	Deceleration Time 4 (Motor 2 Decel Time 2)	0.0 to 6000.0*2	10.0 s	0
lera	C1-09	Fast Stop Time	0.0 to 6000.0*2	10.0 s	×
Acceleration and Deceleration Times	C1-10	Accel/Decel Time Setting Units	0, 1	1	×
<	C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0	0.0 Hz	×
ve ristics	C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00	*3	×
urve	C2-02	S-Curve Characteristic at Accel End	0.00 to 10.00	0.20 s	×
S-Cun Character	C2-03	S-Curve Characteristic at Decel Start	0.00 to 10.00	0.20 s	×
5	C2-04	S-Curve Characteristic at Decel End	0.00 to 10.00	0.00 s	×
	C3-01	Slip Compensation Gain	0.0 to 2.5	*3	0
	C3-02	Slip Compensation Primary Delay Time	0 to 10000	*3	0
	C3-03	Slip Compensation Limit	0 to 250	200%	×
E		Slip Compensation Selection			
sati	C3-04	during Regeneration	0 to 2	0	×
Slip Compensation	C3-05	Output Voltage Limit Operation Selection	0, 1	0	×
l m				dep. on	
ပိ	C3-21	Motor 2 Slip Compensation Gain	0.00 to 2.50	E3-01	0
Slip	C3-22	Motor 2 Slip Compensation Primary Delay Time	0 to 10000	dep. on E3-01	0
	C3-23	Motor 2 Slip Compensation Limit	0 to 250	200%	×
		Motor 2 Slip Compensation	- 10 - 20		
	C3-24	Selection during Regeneration	0 to 2	0	×
					0
٦	C4-01	Torque Compensation Gain	0.00 to 2.50	*3	(PM mo-
atio	0 1 0 1	11.400 compondation dam	5.55 10 2.50	1.5	tor ×)
- Sue	C4-02	Torque Compensation Primary Delay Time1	0 to 60000	*3 *4	0
npe	C4-02	Torque Compensation at Forward Start			_
ြင့်		· · · · · · · · · · · · · · · · · · ·	0.0 to 200.0	0.0%	×
Torque Compensation	C4-04	Torque Compensation at Reverse Start	-200.0 to 0.0	0.0%	×
orqu	C4-05	Torque Compensation Time Constant	0 to 200	10 ms	×
Ĕ	C4-06	Torque Compensation Primary Delay Time 2	0 to 10000	150 ms	×
1	C4-07	Motor 2 Torque Compensation Gain	0.00 to 2.50	1.00	

Function	No.	Name	Range	Default	Changes during Run
	C5-01	ASR Proportional Gain 1	0.00 to 300.00*3	*3	0
	C5-02	ASR Integral Time 1	0.000 to 10.000	*3	0
	C5-03	ASR Proportional Gain 2	0.00 to 300.00*3	*3	0
		ASR Integral Time 2	0.000 to 10.000	*3	0
		ASR Limit	0.0 to 20.0	5.0%	×
		ASR Primary Delay Time Constant	0.000 to 0.500	*3	×
	C5-07	ASR Gain Switching Frequency	0.0 to 400.0	0.0 Hz	×
		ASR Integral Limit	0 to 400	400%	×
$\widehat{}$	C5-12	Integral Value during Accel/Decel	0, 1	0	×
· (ASB	C5-17	Motor Inertia	0.0001 to 600.00	*2 dep. on E5-01	×
ator	C5-18	Load Inertia Ratio	0.0 to 6000.0	1.0	×
Regula	C5-21	Motor 2 ASR Proportional Gain 1	0.00 to 300.00*3	dep. on E3-01	0
Speed	C5-22	Motor 2 ASR Integral Time 1	0.000 to 10.000	dep. on E3-01	0
Automatic Speed Regulator (ASR)	C5-23	Motor 2 ASR Proportional Gain 2	0.00 to 300.00*3	dep. on E3-01	0
Auto	C5-24	Motor 2 ASR Integral Time 2	0.000 to 10.000	dep. on E3-01	0
	C5-25	Motor 2 ASR Limit	0.0 to 20.0	5.0%	×
	C5-26	Motor 2 ASR Primary Delay Time Constant	0.000 to 0.500	dep. on E3-01	×
	C5-27	Motor 2 ASR Gain Switching Frequency	0.0 to 400.0	0.0 Hz	×
	C5-28	Motor 2 ASR Integral Limit	0 to 400	400%	×
	C5-32	Integral Operation during Accel/ Decel for Motor 2	0, 1	0	×
	C5-37	Motor 2 Inertia	0.0001 to 600.00	*2	×
	C5-38	Motor 2 Load Inertia Ratio	0.0 to 6000.0	1.0	×
	C6-01	Drive Duty Selection	0, 1	0	×
	C6-02	Carrier Frequency Selection	1 to F	*2	×
آ ک	C6-03	Carrier Frequency Upper Limit	1.0 to 15.0	*2	×
Carrier requency	C6-04	Carrier Frequency Lower Limit	1.0 to 15.0	*2	×
Fig. 5	C6-05	Carrier Frequency Proportional Gain	0 to 99	*2	×
ш	C6-09	Carrier Frequency during Rotational Auto-Tuning	0, 1	0	×
	d1-01	Frequency Reference 1			0
	d1-02	Frequency Reference 2			0
	d1-03	Frequency Reference 3			0
	d1-04	Frequency Reference 4			0
	d1-05	Frequency Reference 5			0
nce	d1-06	Frequency Reference 6			0
Frequency Reference	d1-07	Frequency Reference 7			0
Ref	d1-08	Frequency Reference 8	0.00 to	0.00 Hz	0
cy l	d1-09	Frequency Reference 9	400.00*2*3		0
ien	d1-10	Frequency Reference 10			0
nbe.	d1-11	Frequency Reference 11			0
ш	d1-12	Frequency Reference 12			0
	d1-13	Frequency Reference 13			0
	d1-14	Frequency Reference 14			0
	d1-15	Frequency Reference 15			0
	d1-16	Frequency Reference 16			0
	d1-17	Jog Frequency Reference	0.00 to 400.00*2*3	6.00 Hz	0
		Francisco Deference Universitiesit	0.0 to 110.0	100.0%	×
/pber/	d2-01	Frequency Reference Upper Limit	0.0 10 110.0	100.078	
equency Upper/ Lower Limits	d2-01 d2-02	Frequency Reference Copper Limit		0.0%	×

Function	No.	Name	Range	Default	Changes during Run
>	d3-01	Jump Frequency 1			×
Jump	d3-02	Jump Frequency 2	0.0 to 400.0	0.0 Hz	×
	d3-03	Jump Frequency 3			×
۱ "	d3-04	Jump Frequency Width	0.0 to 20.0	1.0 Hz*3	×
	d4-01	Freq. Ref. Hold Function Selection	0, 1	0	×
_ ح	d4-03	Freq. Ref. Bias Step (Up/Down 2)	0.00 to 99.99	0.00 Hz	0
를 된	d4-04	Freq. Ref. Bias Accel/Decel (Up/Down 2)	0, 1	0	0
e S		Freq. Ref. Bias Operation Mode			
ren	d4-05	Selection (Up/Down 2)	0, 1	0	0
efe vn 2	d4-06	Freq. Ref. Bias (Up/Down 2)	-99.9 to 100.0	0.0%	×
N N	u. 00	Analog Frequency Reference	33.3 to 100.0	0.070	
Frequency Reference Hold and Up/Down 2 Function	d4-07	Fluctuation (Up 2/Down 2)	0.1 to 100.0	1.0%	0
reque	d4-08	Freg. Ref. Bias Upper Limit (Up/Down 2)	0.0 to 100.0	0.0%	0
Fre	d4-09	Freq. Ref. Bias Lower Limit (Up/Down 2)	-99.9 to 0.0	0.0%	0
	d4-10	Up/Down Freq. Ref. Limit Selection	0, 1	0.070	×
	d5-01	Torque Control Selection	0, 1	0	×
				-	
	d5-02	Torque Reference Delay Time	0 to 1000	0 ms	×
e	d5-03	Speed Limit Selection	1, 2	1	
Torque	d5-04	Speed Limit	-120 to 120	0%	×
မ ပိ	d5-05	Speed Limit Bias	0 to 120	10%	×
	d5-06	Speed/Torque Control Switchover	0 to 1000	0 ms	×
		Time	- 10 1001		
	d5-08	Unidirectional Speed Limit Bias	0, 1	1	×
ning cing	d6-01	Field Weakening Level	0 to 100	80%	×
Field Weakening and Field Forcing	d6-02	Field Weakening Frequency Limit	0.0 to 400.0	0.0 Hz	×
d We	d6-03	Field Forcing Selection	0, 1	0	×
Fiel	d6-06	Field Forcing Limit	100 to 400	400%	×
	d7-01	Offset Frequency 1			0
Offset	d7-02	Offset Frequency 2	-100.0 to 100.0	0.0%	0
Offset Frequency	d7-03	Offset Frequency 3			0
	E1-01	Input Voltage Setting	155 to 255	200 V *5	×
	E1-03	V/f Pattern Selection	0 to F*3	F*1	×
	E1-04	Maximum Output Frequency	40.0 to 400.0*3	*2 dep. on E5-01 for PM motor	×
	E1-05	Maximum Voltage	0.0 to 255.0*5	#2 dep. on E5-01 for PM motor	×
V/f Pattern for motor 1	E1-06	Base Frequency	0.0 to E1-04* ³	#2 dep. on E5-01 for PM motor	×
ttern fo	E1-07	Middle Output Frequency	0.0 to E1-04	*2	×
V/f Pai	E1-08	Middle Output Frequency Voltage	0.0 to 255.0*5	*2	×
	E1-09	Minimum Output Frequency	0.0 to E1-04*5	#2 dep. on E5-01 for PM motor	×
	E1-10	Minimum Output Frequency Voltage	0.0 to 255.0*5	*2	×
	E1-11	Middle Output Frequency 2	0.0 to E1-04*2	0.0 Hz	×
	E1-12	Middle Output Frequency Voltage 2	0.0 to 255.0*2*5	0.0 V	×
	E1-13	Base Voltage	0.0 to 255.0*5	0.0 V*2	×

Note: Footnotes are listed on page 23.

Parameter List (continued)

unction	No.	Name	Range	Default	Change during Ru
			10% to 200%		
	E2-01	Motor Rated Current	of the drive	*2	×
			rated current*2		
ers	E2-02	Motor Rated Slip	0.00 to 20.00	*2	×
	E2-03	Motor No-Load Current	0 to E2-01*2	*2	×
S	E2-04	Number of Motor Poles	2 to 48	4	×
nete	E2-05	Motor Line-to-Line Resistance	0.000 to 65.000	*2	×
ran	E2-06	Motor Leakage Inductance	0.0 to 40.0	*2	×
Ра		Motor Iron-Core Saturation			
Motor 1 Parameters	E2-07	Coefficient 1	E2-07 to 0.50	0.50	×
Ĭ	E2-08	Motor Iron-Core Saturation Coefficient 2	E2-07 to 0.75	0.75	×
	E2-09	Motor Mechanical Loss	0.0 to 10.0	0.0%	×
	F0.40	Motor Iron Loss for Torque	0.4- 05505	140	
	E2-10	Compensation	0 to 65535	*2	×
	E2-11	Motor Rated Power	0.00 to 650.00	*2	×
	E3-01	Motor 2 Control Mode Selection	0 to 3	0	×
	E3-04	Motor 2 Max. Output Frequency	40.0 to 400.0	dep. on E3-01	×
	E3-05	Motor 2 Max. Voltage	0.0 to 255.0*5	*5	×
				dep. on	
2	E3-06	Motor 2 Base Frequency	0.0 to E3-04	E3-01	×
Moto	E3-07	Motor 2 Mid Output Freq.	0.0 to E3-04	dep. on E3-01	×
ern for	E3-08	Motor 2 Mid Output Freq. Voltage	0.0 to 255.0*5	*5 dep. on E3-01	×
V/f Pattern for Motor 2	E3-09	Motor 2 Min. Output Freq.	0.0 to E3-04	dep. on E3-01	×
_	E3-10	Motor 2 Min. Output Freq. Voltage	0.0 to 255.0*5	≯ 5 dep. on E3-01	×
	E3-11	Motor 2 Mid Output Frequency 2	0.0 to E3-04*3	0.0*2	×
	E3-12	Motor 2 Mid Output Frequency Voltage 2	0.0 to 255.0*5	0.0*2	×
	E3-13		0.0 to 255.0*5	0.0*2	×
	E4-01	Motor 2 Rated Current	10% to 200% of the drive rated current*2	*2	×
	E4-02	Matar 2 Dated Clin		*2	×
		'	0.00 to 20.00*2 0 to E4-01*2		
Motor 2 Parameters	E4-03			*2	
am	E4-04	Motor 2 Motor Poles	2 to 48	4	×
Par	E4-05		0.000 to 65.000	*2	×
or 2 I	E4-06	Motor 2 Leakage Inductance Motor 2 Motor Iron-Core	0.0 to 40.0	*2	×
Mot	E4-07	Saturation Coefficient 1	0.00 to 0.50	0.50	×
	E4-08	Motor 2 Motor Iron-Core Saturation Coefficient 2	E4-07 to 0.75	0.75	×
	E4-09	Motor 2 Mechanical Loss	0.0 to 10.0	0.0%	×
	E4-10	Motor 2 Iron Loss	0 to 65535	*2	×
	E4-11	Motor 2 Rated Capacity	0.00 to 650.00	*2	×
*8	E5-01	Motor Code Selection	0000 to FFFF	*2 *1	×
ettings	E5-02	Motor Rated Capacity	0.10 to 650.00	★1 dep. on E5-01	×
S			10% to 200%	*1	
PM Motor Settings	E5-03	Motor Rated Current	of the drive	dep. on	×
PM	E5-04	Number of Motor Poles	rated current*2	E5-01 *1	
	ED-U4	Number of Motor Poles	2 to 48	dep. on E5-01	×

Function	No.	Name	Range	Default	Changes during Run				
	E5-05	Motor Stator Resistance	0.000 to 65.000	* 1 dep. on E5-01	×				
*8	E5-06	Motor d-Axis Inductance	0.00 to 300.00	* 1 dep. on E5-01	×				
PM Motor Settings	E5-07	Motor q-Axis Inductance	0.00 to 600.00	* 1 dep. on E5-01	×				
// Moto	E5-09	Motor Induction Voltage Constant 1	0.0 to 2000.0	* 1 dep. on E5-01	×				
	E5-11	Encoder Z Pulse Offset	-180.0 to 180.0	0.0 deg	×				
	E5-24	Motor Induction Voltage Constant 2	0.0 to 2000.0	★1 dep. on E5-01	×				
	F1-01	PG 1 Pulses Per Revolution	0 to 60000	600 ppr*3	×				
	F1-02	Operation Selection at PG Open Circuit (PGo)	0 to 5	1	×				
		Operation Selection at Overspeed (oS)	0 to 3	1	×				
		Operation Selection at Deviation	0 to 3	3	×				
	F1-05	PG 1 Rotation Selection	0, 1	*3	×				
	F1-06	PG 1 Division Rate for PG Pulse Monitor	1 to 132	1	×				
	F1-08	Overspeed Detection Level	0 to 120	115%	×				
X3	F1-09	Overspeed Detection Delay Time	0.0 to 2.0	*3	×				
PG.	F1-10	Excessive Speed Deviation Detection Level	0 to 50	10%	×				
PG Speed Control Card (PG-B3/PG-X3)	F1-11	Excessive Speed Deviation Detection Delay Time	0.0 to 10.0	0.5 s	×				
<u>-</u>	F1-12	PG 1 Gear Teeth 1	0 to 1000	0	×				
Sarc	F1-13	PG 1 Gear Teeth 2	0 to 1000	0	×				
0		PG Open-Circuit Detection Time	0.0 to 10.0	2.0 s	×				
l pt	F1-18	dv3 Detection Selection	0 to 10	10	×				
ŏ	F1-19	dv4 Detection Selection	0 to 5000	128	×				
eec	F1-20	PG Option Card Disconnect Detection 1	0, 1	1	×				
Sp	F1-21	PG 1 Signal Selection	0, 1	0	×				
ဗ္ဗ	F1-30	PG Card Option Port for Motor 2 Selection	0, 1	1	×				
-	F1-31	PG 2 Pulses Per Revolution 0 to 60000 1024 ppr							
	F1-32	PG 2 Rotation Selection	0	×					
	F1-33	PG 2 Gear Teeth 1	0, 1 0 to 1000	0	×				
	F1-34	PG 2 Gear Teeth 2	0 to 1000	0	×				
		PG 2 Division Rate for PG Pulse Monitor	1 to 132	1	×				
		PG Option Card Disconnect Detection 2	0, 1	1	×				
-	F1-37	PG 2 Signal Selection	0, 1	0	×				
Analog Input Card (AI-A3)	F2-01	Analog Input Option Card Operation Selection	0, 1	0	×				
nal	F2-02	Analog Input Option Card Gain	-999.9 to 999.9	100.0%	0				
< 0	F2-03	Analog Input Option Card Bias	-999.9 to 999.9	0.0%	0				
Input DI-A3)	F3-01	Digital Input Option Card Input Selection	0 to 7	0	×				
Digital Input Card (DI-A3)	F3-03	Digital Input Option DI-A3 Data Length Selection	0 to 2	2	×				
	F4-01	Terminal V1 Monitor Selection	000 to 999	102	×				
ard	F4-02	Terminal V1 Monitor Gain	-999.9 to 999.9	100.0%	0				
5	F4-03	Terminal V2 Monitor Selection	000 to 999	103	×				
A3)	F4-04	Terminal V2 Monitor Gain	-999.9 to 999.9	50.0%	0				
Analog Monitor Card (AO-A3)	F4-05	Terminal V1 Monitor Bias	-999.9 to 999.9	0.0%	0				
og 🌣	F4-06	Terminal V2 Monitor Bias	-999.9 to 999.9	0.0%	0				
ına	F4-07	Terminal V1 Signal Level	0, 1	0	×				
٩	F4-08	Terminal V2 Signal Level	0, 1	0	×				
<u>@</u>	F5-01	Terminal P1-PC Output Selection	0 to 192	2	×				
-A	F5-02	Terminal P2-PC Output Selection	0 to 192	4	×				
8	F5-03	Terminal P3-PC Output Selection	0 to 192	6	×				
<u>5</u>		Terminal P4-PC Output Selection	0 to 192	37	×				
Ca	F5-04	· ·		57 F					
χ	F5-05	Terminal P5-PC Output Selection	0 to 192		×				
Digital Output Card (DO-A3)	F5-06	Terminal P6-PC Output Selection	0 to 192	F	×				
al	F5-07	Terminal M1-M2 Output Selection	0 to 192	0	×				
)igit	F5-08	Terminal M3-M4 Output Selection	0 to 192	1	×				
	F5-09	DO-A3 Output Mode Selection	0 to 2	0	×				

Function	No.	Name	Range	Default	Change during R			
	F6-01	Communications Error Operation Selection	0 to 3	1	×			
	F6-02	External Fault from Comm. Option Detection Selection	0, 1	0	×			
	F6-03	External Fault from Comm.	0 to 3	1	×			
	F6-04	Option Operation Selection bUS Error Detection Time	0.0 to 5.0	2.0 s	×			
	F6-06	Torque Reference/Torque Limit	0, 1	0	×			
	F6-07	Selection from Communications Option Multi-Step Speed during NetRef/ComRef	0,1	0	×			
	F6-08	Reset Communication Parameters	0,1	0*1	×			
	F6-10	CC-Link Node Address	0 to 64	0	×			
-	F6-11	Communication Speed	0 to 4	0	×			
Sarc	F6-14	CC-Link bUS Error Auto Reset	0, 1	0	×			
) uc	F6-20	MECHATROLINK-II Node Address	20 to 3FH	21	×			
ptic	F6-21	MECHATROLINK-II Frame Length	0,1	0	×			
O L	F6-22	MECHATROLINK-II Link Speed	0,1	0	×			
atic	F6-23	MECHATROLINK-II Monitor Selection (E)	0 to FFFFH	0	×			
nnic	F6-24	MECHATROLINK-II Monitor Selection (F)	0 to FFFFH	0	×			
ПШ	F6-25	MECHATROLINK-II WDT Error Selection	0 to 3	1	×			
Communication Option Card	F6-26	MECHATROLINK-II bUS Errors	2 to 10	2	×			
	F6-30	PROFIBUS-DP Node Address	0 to 125	0	×			
	F6-31	PROFIBUS-DP Clear Mode Selection	0, 1	0	×			
	F6-32	PROFIBUS-DP Data Format Selection	0, 1	0	×			
	F6-35	CANopen Node ID Selection	0 to 126	0	×			
	F6-36	CANopen Communication Speed	0 to 8	6	×			
	F6-50							
	to	DeviceNet Parameters	_	_	×			
	F6-63							
	F6-64							
	to	Reserved	_	_	×			
	F6-71							
	H1-01	Multi-Function Digital Input	1 40 00	40 (F)*6	×			
	н1-01	Terminal S1 Function Selection	1 to 9F	40 (F)**	^			
	H1-02	Multi-Function Digital Input	1 to 9F	41 (F)*6	×			
	111 02	Terminal S2 Function Selection	1 10 91	41(1)				
	H1-03	Multi-Function Digital Input	1 to 9F	24	×			
_	111 03	Terminal S3 Function Selection	1 10 91	24	^			
inction Inputs	H1-04	Multi-Function Digital Input	1 to 9F	14	×			
–		Terminal S4 Function Selection	1 10 01					
Multi-F Digital	H1-05	Multi-Function Digital Input	1 to 9F	3 (0)*6	×			
™ Ö	50	Terminal S5 Function Selection		- (0/				
	H1-06	Multi-Function Digital Input	1 to 9F	4 (3)*6	×			
		Terminal S6 Function Selection	-	,				
	H1-07	Multi-Function Digital Input	1 to 9F	6 (4)*6	×			
		Terminal S7 Function Selection						
	H1-08	Multi-Function Digital Input	1 to 9F	8	×			
		Terminal S8 Function Selection						
	H2-01	Terminals M1-M2 Function	0 to 192	0	×			
tion		Selection (relays)						
ctio Itpu	H2-02	Terminal P1-PC Function	0 to 192	1	×			
Unc		Selection (photocoupler) Terminal P2-PC Function						
ti-Funci tal Outp		TETTITION FATEUR FULLCHOTT	0 to 192	2	×			
Multi-Funci Digital Outp	H2-03	Selection (photocoupler)	ı		×			
Multi-Function Digital Outputs		Selection (photocoupler) Watt Hour Output Unit Selection	0 to 4	(1)	^			
Multi-Funci Digital Out	H2-06	Watt Hour Output Unit Selection	0 to 4					
	H2-06 H3-01	Watt Hour Output Unit Selection Terminal A1 Signal Level Selection	0, 1	0	×			
	H2-06 H3-01 H3-02	Watt Hour Output Unit Selection Terminal A1 Signal Level Selection Terminal A1 Function Selection	0, 1 0 to 31	0	×			
	H2-06 H3-01 H3-02 H3-03	Watt Hour Output Unit Selection Terminal A1 Signal Level Selection Terminal A1 Function Selection Terminal A1 Gain Setting	0, 1 0 to 31 -999.9 to 999.9	0 0 100.0%	×			
	H2-06 H3-01 H3-02 H3-03 H3-04	Watt Hour Output Unit Selection Terminal A1 Signal Level Selection Terminal A1 Function Selection Terminal A1 Gain Setting Terminal A1 Bias Setting	0, 1 0 to 31 -999.9 to 999.9 -999.9 to 999.9	0 0 100.0% 0.0%	× 0			
	H2-06 H3-01 H3-02 H3-03 H3-04 H3-05	Watt Hour Output Unit Selection Terminal A1 Signal Level Selection Terminal A1 Function Selection Terminal A1 Gain Setting Terminal A1 Bias Setting Terminal A3 Signal Level Selection	0, 1 0 to 31 -999.9 to 999.9 -999.9 to 999.9 0, 1	0 0 100.0% 0.0%	× 0 0 x			
Analog	H2-06 H3-01 H3-02 H3-03 H3-04	Watt Hour Output Unit Selection Terminal A1 Signal Level Selection Terminal A1 Function Selection Terminal A1 Gain Setting Terminal A1 Bias Setting	0, 1 0 to 31 -999.9 to 999.9 -999.9 to 999.9	0 0 100.0% 0.0% 0	× 0			

Function	No.	Name	Range	Default	Changes during Run					
	H3-09	Terminal A2 Signal Level Selection	0 to 3	2	×					
	H3-10	Terminal A2 Function Selection	0 to 31	0	×					
uts	H3-11	Terminal A2 Gain Setting	-999.9 to 999.9	100.0%	0					
lnp	H3-12	Terminal A2 Bias Setting	-999.9 to 999.9	0.0%	0					
log	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	×					
Multi-Function Analog Inputs	H3-14	Analog Input Terminal Enable Selection	1 to 7	7	×					
unctio	H3-16	Multi-Function Analog Input Terminal A1 Offset	−500 ~ 500	0	×					
Multi-F	H3-17	Multi-Function Analog Input Terminal A2 Offset	−500 ~ 500	0	×					
	H3-18	Multi-Function Analog Input Terminal A3 Offset	−500 ~ 500	0	×					
	H4-01	Multi-Function Analog Output Terminal FM Monitor Selection	000 to 999	102	×					
	H4-02	Multi-Function Analog Output	-999.9 to 999.9	100.0%	0					
utputs	H4-03	Terminal FM Gain Multi-Function Analog Output Terminal FM Bias	-999.9 to 999.9	0.0%	0					
Multifunction Analog Outputs	H4-04	103	×							
n Ana	H4-05	Terminal AM Monitor Selection Multi-Function Analog Output	000 to 999 -999.9 to 999.9		0					
unctio		Terminal AM Gain Multi-Function Analog Output								
Multif	H4-06	Terminal AM Bias Multi-Function Analog Output	-999.9 to 999.9 0, 1	0.0%	0					
	H4-07	Terminal FM Signal Level Selection	0	×						
	H4-08	Terminal AM Signal Level Selection								
Ę.	H5-01	Drive Node Address	0 to FFH	1F	×					
atio	H5-02	Communication Speed Selection	0 to 8	3	×					
nic	H5-03	Communication Parity Selection	0 to 2	0	×					
ommr	H5-04	Stopping Method After Communication Error (CE)	0 to 3	0	×					
erial C	H5-05	Communication Fault Detection Selection	0, 1	0	×					
S Se	H5-06	Drive Transmit Wait Time	5 to 65	5 ms	×					
appris	H5-07	RTS Control Selection	1	×						
Noc	H5-09	CE Detection Time	0.0 to 10.0	2.0 s	×					
MEMOBUS/Modbus Serial Communication	H5-10	Unit Selection for MEMOBUS/ Modbus Register 0025H	0	×						
MEMC	H5-11	Communications ENTER Function Selection	0, 1	1	×					
	H5-12	Run Command Method Selection	0, 1	0	×					
rt	H6-01	Pulse Train Input Terminal RP Function Selection	0	×						
Pulse Train Input/Output	H6-02	Pulse Train Input Scaling	1000 to 32000	1440 Hz	0					
ut/C	H6-03	Pulse Train Input Gain	0.0 to 1000.0	100.0%	0					
lub	H6-04	Pulse Train Input Bias	-100.0 to 100.0		0					
ain	H6-05	Pulse Train Input Filter Time	0.00 to 2.00	0.10 s	0					
Ę	H6-06	Pulse Train Monitor Selection	000 to 809	102	0					
ulse	H6-07	Pulse Train Monitor Scaling	0 to 32000	1440 Hz	0					
	H6-08	Pulse Train Input Minimum Frequency	0.1 to 1000.0	0.5 Hz	×					
	L1-01	Motor Overload Protection Selection	0 to 5	*3	×					
ے	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min.	×					
Motor Protection	L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3	×					
tor Pre	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1	×					
Mo	L1-05	Motor Temperature Input Filter Time (PTC input)	0.00 to 10.00	0.20 s	×					
	L1-13	Continuous Electrothermal Operation Selection	0, 1	1	×					
		Operation Selection								

Note: Footnotes are listed on page 23.

Parameter List (continued)

unction	No.	Name	Range	Default	Online Changin
	L2-01	Momentary Power Loss Operation Selection	0 to 5	0	×
		Momentary Power Loss			
	L2-02	Ride-Thru Time	0.0 to 25.5	*2	×
	L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 to 5.0	*2	×
Thru	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0	*2	×
Momentary Power Loss Ride-Thru	L2-05	Undervoltage Detection Level (Uv)	*5 dep. on E1-01	×	
гу F	L2-06	KEB Deceleration Time	0.00 to 6000.00*2	0.00 s	×
ntaı	L2-07	KEB Acceleration Time	0.00 to 6000.00*2		×
mei	L2-08	Frequency Gain at KEB Start	0 to 300	100%	×
Mo	L2-10	KEB Detection Time	0 to 2000	50 ms	×
	L2-11	DC Bus Voltage Setpoint during KEB	150 to 400*5	*5 dep. on E1-01	×
	L2-29	KEB Method Selection	0 to 3	0	×
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	×
	L3-02	Stall Prevention Level during Acceleration	0 to 150*2	*2	×
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50%	×
	L3-04	Stall Prevention Selection during Deceleration	0 to 5*3	1	×
	L3-05	Stall Prevention Selection during Run	0 to 2	1	×
	L3-06			*2	×
	L3-00	Stall Prevention Level during Run Overvoltage Suppression Function Selection	0, 1	0	×
Stall Prevention	L3-17	Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention	150 to 400*5	370 Vdc* ⁵ dep. on E1-01	×
II Pre∖	L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	*3	×
Sta	L3-21	Accel/Decel Rate Calculation Gain	0.10 to 200.00	1.00	×
	L3-22	Deceleration Time at Stall Prevention during Acceleration	0.0 to 6000.0	0.0 s	×
	L3-23	Automatic Reduction Selection for Stall Prevention during Run	0, 1	0	×
	L3-24	Motor Acceleration Time for Inertia Calculations	0.001 to 10.000	*2 dep. on E2-11 dep. on E5-01	×
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	×
	L3-25 L3-26		0.0 to 1000.0 0 to 65000	1.0 0μF	×
		Load Inertia Ratio Additional DC Bus Capacitors Stall Prevention Detection Time			
	L3-26	Additional DC Bus Capacitors	0 to 65000	0μF	×
	L3-26 L3-27 L4-01	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level	0 to 65000 0 to 5000 0.0 to 400.0	0 μ F 50 ms	×
ou	L3-26 L3-27 L4-01 L4-02	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0	0 μ F 50 ms 0.0 Hz *3	×
ection	L3-26 L3-27 L4-01 L4-02 L4-03	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-)	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0 -400.0 to 400.0	0 μ F 50 ms 0.0 Hz *3 0.0 Hz	× × × ×
ed Detection	L3-26 L3-27 L4-01 L4-02	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-) Speed Agreement Detection Width (+/-) Frequency Reference Loss	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0	0 μ F 50 ms 0.0 Hz *3	× × ×
Speed Detection	L3-26 L3-27 L4-01 L4-02 L4-03 L4-04	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-) Speed Agreement Detection Width (+/-) Frequency Reference Loss Detection Selection Frequency Reference at	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0 -400.0 to 400.0 0.0 to 20.0	0 μ F 50 ms 0.0 Hz *3 0.0 Hz *3	× × × × ×
Speed Detection	L3-26 L3-27 L4-01 L4-02 L4-03 L4-04 L4-05	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-) Speed Agreement Detection Width (+/-) Frequency Reference Loss Detection Selection Frequency Reference at Reference Loss	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0 -400.0 to 400.0 0.0 to 20.0 0, 1	0 μF 50 ms 0.0 Hz *3 0.0 Hz *3 0	× × × × × × × ×
Speed Detection	L3-26 L3-27 L4-01 L4-02 L4-03 L4-04 L4-05 L4-06 L4-07	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-) Speed Agreement Detection Width (+/-) Frequency Reference Loss Detection Selection Frequency Reference at Reference Loss Speed Agreement Detection Selection	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0 -400.0 to 400.0 0.0 to 20.0 0, 1 0.0 to 100.0 0, 1	$0 \mu F$ 50 ms 0.0 Hz $*3$ 0.0 Hz $*3$ 0	× × × × × × × ×
	L3-26 L3-27 L4-01 L4-02 L4-03 L4-04 L4-05 L4-06 L4-07 L5-01	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-) Speed Agreement Detection Width (+/-) Frequency Reference Loss Detection Selection Frequency Reference at Reference Loss Speed Agreement Detection Selection Number of Auto Restart Attempts	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0 -400.0 to 400.0 0.0 to 20.0 0, 1 0.0 to 100.0 0, 1 0 to 10	0 μF 50 ms 0.0 Hz *3 0.0 Hz *3 0 0 80.0%	× × × × × × × × ×
Fault Reset Speed Detection	L3-26 L3-27 L4-01 L4-02 L4-03 L4-04 L4-05 L4-06 L4-07	Additional DC Bus Capacitors Stall Prevention Detection Time Speed Agreement Detection Level Speed Agreement Detection Width Speed Agreement Detection Level (+/-) Speed Agreement Detection Width (+/-) Frequency Reference Loss Detection Selection Frequency Reference at Reference Loss Speed Agreement Detection Selection	0 to 65000 0 to 5000 0.0 to 400.0 0.0 to 20.0 -400.0 to 400.0 0.0 to 20.0 0, 1 0.0 to 100.0 0, 1	$0 \mu F$ 50 ms 0.0 Hz $*3$ 0.0 Hz $*3$ 0	× × × × × × × ×

Torq	L6-08	Mechanical Weakening Detection Operation	0 to 8	0	×					
12	L6-09	Mechanical Weakening Detection Speed Level	- 110.0 to 110.0	110.0%	×					
	L6-10	Mechanical Weakening Detection Time	0.0 to 10.0	0.1 s	×					
	L6-11	Mechanical Weakening Detection Start Time	0 to 65535	0	×					
	L7-01	Forward Torque Limit	0 to 300	200%	×					
	L7-02	Reverse Torque Limit	0 to 300	200%	×					
ij	L7-03	Forward Regenerative Torque Limit	0 to 300	200%	×					
Torque Limit	L7-04	Reverse Regenerative Torque Limit	0 to 300	200%	×					
dne	L7-06	Torque Limit Integral Time Constant	5 to 10000	200 ms	×					
Tor	L7-07	Torque Limit Control Method Selection during Accel/Decel	0, 1	0	×					
	L7-16	Torque Limit Delay at Start	0, 1	1	×					
	L8-01	Internal Dynamic Braking Resistor Protection Selection (ERF type)	0, 1	0	×					
	L8-02	Overheat Alarm Level	50 to 150	*2	×					
	L8-03	Overheat Pre-Alarm Operation Selection	0 to 4	3	×					
	L8-05	Input Phase Loss Protection Selection	0, 1	0	×					
		· ·								
	L8-07	Output Phase Loss Protection	0 to 2	0						
	L8-09	Output Ground Fault Detection Selection	0, 1	*2	×					
	L8-10	Heatsink Cooling Fan Operation Selection	0, 1	0	×					
u	L8-11	Heatsink Cooling Fan Off Delay Time	0 to 300	60 s	×					
ecti	L8-12	Ambient Temperature Setting	-10 to 50	40°C	×					
rote	L8-15	oL2 Characteristics Selection at Low Speeds	0, 1	1	×					
Drive Protection	L8-18	Software Current Limit Selection	0, 1	0	×					
ri	L8-19	Frequency Reduction Rate during oH Pre-Alarm	0.1 to 0.9	0.8	×					
	L8-27	Overcurrent Detection Gain	0.0 to 300.0	300.0%	×					
	L8-29	Current Unbalance Detection (LF2)	0, 1	1	×					
	L8-32	Magnetic Contactor, Fan Power Supply Fault Selection								
	L8-35	Installation Method Selection	0 to 3	*1 *2	×					
	L8-38	Carrier Frequency Reduction Selection	0 to 2	*2	×					
	L8-40	Carrier Frequency Reduction Off DelayTime	0.00 to 2.00	*3	×					
	L8-41	High Current Alarm Selection	0, 1	0	×					
		-		1	×					
	L8-55	Internal Braking Transistor Protection	0,1							
		Power Unit Output Phase Loss Protection	0, 1	1	×					
E io	n1-01	Hunting Prevention Selection	0, 1	1	×					
Hunting Prevention	n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00	×					
le F	n1-03	Hunting Prevention Time Constant	0 to 500	*4	×					
	n1-05	Hunting Prevention Gain while in Reverse Speed Feedback Detection	0.00 to 2.50	0.00	×					
Detect Tuning	n2-01	Control (AFR) Gain	0.00 to 10.00	1.00	×					
Speed Feedback Detection Control (ASR) Tuning	n2-02	Speed Feedback Detection Control (AFR) Time Constant 1	0 to 2000	50 ms	×					
Sont Sont	n2-03	Speed Feedback Detection Control (AFR) Time Constant 2	0 to 2000	750 ms	×					
		High-Slip Braking Deceleration	1	-0/	×					
	n3-01	Frequency Width	1 to 20	5%						
	n3-01		1 to 20 100 to 200	5% *2	×					
	n3-01 n3-02 n3-03	Frequency Width			×					
	n3-01 n3-02 n3-03 n3-04	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop	100 to 200 0.0 to 10.0	*2 1.0 s						
	n3-01 n3-02 n3-03 n3-04 n3-13	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time	100 to 200 0.0 to 10.0 30 to 1200	*2 1.0 s 40 s	×					
	n3-01 n3-02 n3-03 n3-04 n3-13	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time Overexcitation Deceleration Gain High Frequency Injection during	100 to 200 0.0 to 10.0	*2 1.0 s	×					
	n3-01 n3-02 n3-03 n3-04 n3-13 n3-14	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time Overexcitation Deceleration Gain High Frequency Injection during Overexcitation Deceleration	100 to 200 0.0 to 10.0 30 to 1200 1.00 to 1.40 0, 1	*2 1.0 s 40 s 1.10	× × ×					
	n3-01 n3-02 n3-03 n3-04 n3-13 n3-14	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time Overexcitation Deceleration Gain High Frequency Injection during Overexcitation Deceleration High-Slip Suppression Current Level	100 to 200 0.0 to 10.0 30 to 1200 1.00 to 1.40 0, 1 0 to 150	*2 1.0 s 40 s 1.10 0 100%	× × × ×					
High Slip Braking and Overexcitation Braking **	n3-23	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time Overexcitation Deceleration Gain High Frequency Injection during Overexcitation Deceleration High-Slip Suppression Current Level Overexcitation Operation Selection	100 to 200 0.0 to 10.0 30 to 1200 1.00 to 1.40 0, 1 0 to 150 0 to 2	*2 1.0 s 40 s 1.10 0 100%	× × × ×					
High Slip Braking and Overexcitation Braking **		Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time Overexcitation Deceleration Gain High Frequency Injection during Overexcitation Deceleration High-Slip Suppression Current Level	100 to 200 0.0 to 10.0 30 to 1200 1.00 to 1.40 0, 1 0 to 150 0 to 2 0, 1	*2 1.0 s 40 s 1.10 0 100% 0	× × × ×					
High Slip Braking and Overexcitation Braking **	n3-23	Frequency Width High-Slip Braking Current Limit High-Slip Braking Dwell Time at Stop High-Slip Braking Overload Time Overexcitation Deceleration Gain High Frequency Injection during Overexcitation Deceleration High-Slip Suppression Current Level Overexcitation Operation Selection	100 to 200 0.0 to 10.0 30 to 1200 1.00 to 1.40 0, 1 0 to 150 0 to 2	*2 1.0 s 40 s 1.10 0 100%	× × × ×					

Name

L6-01 Torque Detection Selection 1

L6-04 Torque Detection Selection 2 L6-05 Torque Detection Level 2

L6-08 Mechanical Weakening Detection Operation

L6-02 Torque Detection Level 1

L6-03 Torque Detection Time 1

L6-06 Torque Detection Time 2

Online

Changing

×

X

×

X

Default

0

150%

0.1 s

0

150%

0.1 s

0

Range

0 to 8

0 to 300

0.0 to 10.0

0 to 8

0 to 300

0.0 to 10.0

0 to 8

Note: Footnotes are listed on page 23.

Function	No.	Name	Range	Default	Online Changing					
Online Tuning &	n6-01	Online Tuning Selection	0 to 2	2	×					
Online T	n6-05	Online Tuning Gain	0.10 to 5.00	1.00	×					
	n8-01	Initial Rotor Position Estimation Current	0 to 100	50%	×					
ļ	n8-02	Pole Attraction Current	0 to 150	80%	×					
	n8-35	Initial Rotor Position Detection Selection	0 to 2	1	×					
*8	n8-45	Speed Feedback Detection Control Gain	0.80	×						
. <u>∈</u>	n8-47	Pull-In Current Compensation Time Constant	0.0 to 100.0	5.0 s	×					
₽	n8-48	Pull-In Current	20 to 200	30%	×					
PM Motor Control Tuning	n8-49	d-Axis Current for High Efficiency Control	-200.0 to 0.0	dep. on E5-01	×					
to	n8-51	Acceleration/Deceleration Pull-In Current	0 to 200	50%	×					
Mo	n8-54	Voltage Error Compensation Time Constant		1.00 s	×					
≥	n8-55	Load Inertia	0 to 3	0	×					
-	n8-57	High Frequency Injection	0, 1	0	×					
	n8-62	Output Voltage Limit	0.0 to 230.0*5	200.0 Vac*5	×					
	n8-65	Speed Feedback Detection Control Gain during ov Suppression	0.00 to 10.00	1.50	×					
зу	o1-01	Drive Mode Unit Monitor Selection	104 to 809	106	0					
sple	o1-02	User Monitor Selection After Power Up	1 to 5	1	0					
اء ق	o1-03	Digital Operator Display Selection	0 to 3	*3	×					
ato	o1-04	V/f Pattern Display Unit	0, 1	*3	×					
Digital Operator Display Selection	o1-10	User-Set Display Units Maximum Value	1 to 60000	*2	×					
Digita	01-11	User-Set Display Units Decimal Display	0 to 3	*2	×					
ns	o2-01	LO/RE Key Function Selection	0, 1	1	×					
cţi	o2-02	STOP Key Function Selection	0, 1	1	×					
Ë	o2-03	User Parameter Default Value	0 to 2	0	×					
ypad F	o2-04	Drive Model Selection	-	dep. on drive capacity	×					
ator Ke	o2-05	Frequency Reference Setting Method Selection	0, 1	0	×					
per	o2-06	Operation Selection when Digital Operator is Disconnected	0, 1	0	×					
Digital Operator Keypad Functions	o2-07	Motor Direction at Power Up when Using Operator	0, 1	0	×					
۵	o2-09	Reserved		_	×					
roi:	o3-01	Copy Function Selection	0 to 3	0	×					
Copy Function	o3-02	Copy Allowed Selection	0, 1	0	×					
	o4-01	Cumulative Operation Time Setting	0 to 9999	0 H	×					
tţiuc̃	04-02	Cumulative Operation Time Selection	0, 1	0	×					
Maintenance Monitor Settings	o4-03	Cooling Fan Operation Time Setting	0 to 9999	0 H	×					
Jon	o4-05	Capacitor Maintenance Setting	0 to 150	0%	×					
<u>≥</u>	o4-07	DC Bus Pre-charge Relay Maintenance Setting	0 to 150	0%	×					
anc	o4-09	IGBT Maintenance Setting	0 to 150	0%	×					
ten	o4-11	U2, U3 Initialize Selection	0, 1	0	×					
lain	04-12	kWh Monitor Initialization	0, 1	0	×					
Σ	o4-13	Number of Run Commands Counter Initialization	0, 1	0	×					
DWEZ Parameters	q1-01 to q6-07	DWEZ Parameters	-	_	×					

- *1: Parameter is not reset to the default value when the drive is initialized (A1-03). *2: Value depends on other related parameter settings. Refer to A1000 Techni-
- cal Manual for details.
- *3: Default setting depends on the control mode (A1-02). Refer to A1000 Technical Manual for details.
- *4: Default setting depends on drive capacity (o2-04). Refer to A1000 Technical Manual for details.
- *5: Value shown here is for 200 V class drives. Double the value when using a 400 V class drive.
- *6: Value in parenthesis is the default setting for a 3-wire sequence. *7: Sets the value for a SST4 series 1750 r/min motor according to the capaci-
- ty entered to T2-02.

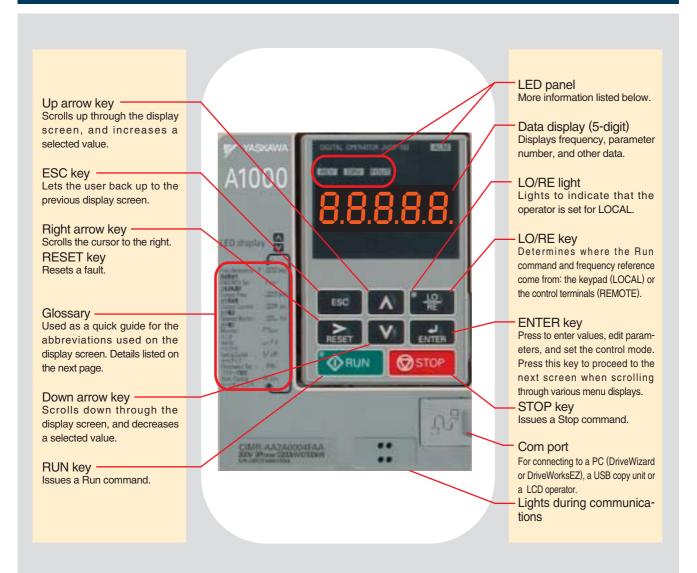
These notes concern drive models 450 kW and above.

- *8: The following parameters groups are not displayed:
 - · b8 (Energy Saving)

 - E5 (PM Motor Settings)n3 (High Slip Braking and Overexcitation Braking)

Function	No.	Name	Range	Default	Online Changing							
DWEZ Connection Parameters	r1-01 to r1-40	DWEZ Connection Parameter 1 to 20 (upper/lower)	0 to FFFFH	0	×							
	T1-00	Motor 1 / Motor 2 Selection	1, 2	1	×							
	T1-01	Auto-Tuning Mode Selection	0 to 4,8,9*3	0	×							
	T1-02	Motor Rated Power	0.00 to 650.00	*4	×							
Induction Motor Auto-Tuning	T1-03	200.0 Vac*5	×									
	T1-04	Motor Rated Current	10% to 200% of the drive rated current	*4	×							
tion	T1-05	Motor Base Frequency	0.0 to 400.0	60.0 Hz	×							
onp	T1-06	Number of Motor Poles	2 to 48	4	×							
ے	T1-07	Motor Base Speed	0 to 24000	1750 r/min	×							
	T1-08	PG Number of Pulses Per Revolution	0 to 60000	600 ppr	×							
	T1-09	Motor No-Load Current (Stationary Auto-Tuning)	0 to T1-04	_	-							
	T1-10	Motor Rated Slip (Stationary Auto-Tuning)		-	_							
	T1-11	Motor Iron Loss	0 to 65535	14 W*2	_ ×							
,	T2-01	PM Motor Auto-Tuning Mode Selection	0 to 3,8,9*3	0	×							
	T2-02	PM Motor Code Selection	0000 to FFFF	*2	×							
	T2-03	PM Motor Type	0,1	1	×							
	T2-04	PM Motor Rated Power	0.00 to 650.00	*4	×							
	T2-05	PM Motor Rated Voltage	0.0 to 255.0*5	200.0 Vac*5	×							
*Bul	T2-06	PM Motor Rated Current	10% to 200% of the drive rated current	*4	× × × × × × × × × × × × × × ×							
un	T2-07	PM Motor Base Frequency	0.0 to 400.0	87.5 Hz	×							
to-1	T2-08	Number of PM Motor Poles	2 to 48	6	×							
Y Au	T2-09	PM Motor Base Speed	0 to 24000	1750 r/min	×							
PM Motor Auto-Tuning &	T2-10	PM Motor Stator Resistance	0.000 to 65.000	*7	×							
₽	T2-11	PM Motor d-Axis Inductance	0.00 to 600.00	*7	×							
	T2-12	PM Motor q-Axis Inductance	0.00 to 600.00	*7	×							
	T2-13	Induced Voltage Constant Unit Selection	0,1	1	×							
	T2-14	PM Motor Induced Voltage Constant	0.1 to 2000.0	*7	×							
	T2-15	Pull-In Current Level for PM Motor Tuning	0 to 120	30%	-							
	T2-16	PG Number of Pulses Per Revolution for PM Motor Tuning	0 to 15000	1024 ppr	-							
	T2-17	Encoder Z Pulse Offset	-180.0 to	0.0 deg	×							
tia	T3-01	Test Signal Frequency	0.1 to 20.0	3.0 Hz	×							
3* ner	T3-02	Test Signal Amplitude	0.1 to 10.0	0.5 rad								
ASR and Inertia Tuning&	T3-03	Motor Inertia	0.0001 to 600.00	*2 dep. on E5-01	×							
\SR	T3-04	System Response Frequency	0.1 to 50.0	10.0 Hz	×							
4	10 04	Earward Control	0.1 10 00.0	10.0112	^							

- · n5 (Feed Forward Control)
- · n6 (Online Tuning)
- · n8 (PM Motor Control Tuning) · T2 (PM Motor Auto-Tuning) · T3 (ASR and Inertia Tuning)

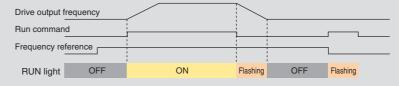

- *9: The following settings ranges are for drive models up to 355 kW:
 - · A1-02 (Control Method Selection) setting range is 0 to 3, and 5 to 7 when using a control mode designed for a PM motor.
 - · C6-02 (Carrier Frequency Selection) setting range is 1, 2, or 7. Selections 3 through A are not displayed. The upper limit for the carrier frequency is 5 kHz. Swing PWM is not available.

 L2-01 (Momentary Power Loss Operation Selection) setting range is 0 to 4.
 - Setting 5 is not available.
 - · L3-04 (Stall Prevention Selection during Deceleration) setting range is 0, 1, 4, and 5. Settings 2 and 3 are not available.
- *10: Parameter L8-78 is available only for drives 450 kW and above.

Basic Instructions

Outstanding operability and quick setup

Operator Names and Functions



LED Display Guide

LED	ON	Flashing	OFF
ALM	A fault has occurred.	Alarm situation detected. Operator error (OPE)	Normal operation
REV	Motor is rotating in reverse.	<u> </u>	Motor is rotating forward.
DRV	In the "Drive Mode"	_	Programming Mode
FOUT	Output frequency	_	_
LO RE	Run command assigned to the operator (LOCAL)	_	Control assigned to remote location
♦ RUN	During run	During deceleration Run command is present but the frequency reference is zero.	Drive is stopped.

How the RUN light works:

Operation Example

Using the LED Operator to Run the Drive

Drive Mode: Run and Stop commands, displays operation status such as the frequency reference, output frequency, output current, output voltage, etc.

How to Monitor the Frequency Reference

Setup Mode

The list of Applications Presets can be accessed in the Setup Mode. Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected. All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access.

r (A1-06-1)

Selecting a Conveyor (A1-0	06=1)	
Steps	Key	Result/Display
Application Selection	ENTER	" APPL"
	ENTER	öo
	RESET	oö
Select, "Conveyor".	\land	"End" appears while the
All parameters relating to the preset values for a Conveyor application are then listed as	ENTER	APPL
Preferred Parameters.	Scroll to the Preferred Parameter using the up arrow key and see which parameters have been selected.	

Conveyor Application Presets

No.	Parameter Name	Optimum Setting
A1-02	Control Method Selection	0: V/f Control
C1-01	Acceleration Time 1	3.0 (s)
C1-02	Deceleration Time 1	3.0 (s)
C6-01	Duty Mode Selection	0: Heavy Duty (HD)
L3-04	Stall Prevention Selection during Deceleration	1: Enabled

Preferred Parameters

No.	Parameter Name	No.	Parameter Name
A1-02	Control Method Selection	C1-02	Deceleration Time 1
b1-01	Frequency Reference Selection 1	E2-01	Motor Rated Current
b1-02	Run Command Selection 1	L3-04	Stall Prevention Selection during Deceleration
C1-01	Acceleration Time 1	-	_

Standard Specifications

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance (default).

200 V Class

20	No. Normal Duty, no. neavy Duty																					
Mod	lel CIMR-AA2A		0004	0006	0008*7	0010	0012	0018*7	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max	. Applicable	ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Mot	or Capacity*1 kW	HD	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Input	Rated Input	ND	3.9	7.3	8.8	10.8	13.9	18.5	24	37	52	68	80	92	111	136	164	200	271	324	394	471
르	Current*2 A	HD	2.9	5.8	7	7.5	11	15.6	18.9	28	37	52	68	80	82	111	136	164	200	271	324	394
	Rated Output	ND*4	1.3	2.3	3	3.7	4.6	6.7	8	11.4	15.2	21	26	31	42	53	64	80	95	119	137	158
	Capacity*3 kVA	HD	1.2*5	1.9*5	2.6*5	3*5	4.2*5	5.3*5	6.7*5	9.5*5	12.6*5	17.9*5	23*5	29*5	32*5	44*5	55*6	69*6	82*6	108*6	132*6	158*4
	Rated Output	ND*4	3.5	6	8	9.6	12	17.5	21	30	40	56	69	81	110	138	169	211	250	312	360	415
ΙĦ	Current A	HD	3.2*5	5*5	6.9*5	8*5	11*5	14*5	17.5*5	25*5	33*5	47*5	60*5	75*5	85*5	115*5	145*6	180*6	215*6	283*6	346*6	415*4
Output	Overload To	ler-		ND	Ratin	g*8: 1	20% o	f rated	d outpo	ut curr	ent fo	r 60 s,	HD R	ating*	⁸ : 150	% of r	ated o	ted output current for 60 s				
0	ance								(Dera	ating n	nay be	requi	red fo	r repet	itive lo	oads)						
	Carrier Frequ	uency						1	l to 15	kHz*	В							1	1 to 10	kHz*	8	
	Max. Output V	oltage						Th	ree-p	hase 2	200 to	240 V	' (relat	tive to	input	voltag	e)					
	Max. Output Fre	quency										400	Hz*8									
	Rated Voltage/Rated F	requency						Thre	e-pha	se 200) to 24	IO Vac	50/60) Hz, 2	270 to	340 V	dc*9					
7	Allowable Voltage Fli	uctuation									-	15% to	+109	%								
ower	Allowable Frequency F	luctuation										±5	%									
۵	Power Supply	ND	2.2	3.1	4.1	5.8	7.8	9.5	14	18	27	36	44	52	51	62	75	91	124	148	180	215
	kVA	HD	1.3	2.2	3.1	4.1	5.8	7.8	9.5	14	18	27	36	44	37	51	62	75	91	124	148	180
Harm	onic Suppression DC	Reactor						Opt	tion									Bui	lt-in			
Bral	king Function Brakin	ng Resistor							Bui	lt-in									Opt	tion		

- *1: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 200 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
- *2: Value displayed is for when operating at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, input side reactor, and wiring conditions.
- *3: Rated output capacity is calculated with a rated output voltage of 220 V.
- *4: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.
- *5: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.
- *6: This value assumes a carrier frequency of 5 kHz. Increasing the carrier frequency requires a reduction in current.
- $*7$: These models are available in Japan only.
- *8: Carrier frequency can be set by the user.
- *9: DC input power supply is not UL or CE certified.

400 V Class

ND : Normal Duty, HD : Heavy Duty

70	U V Class																					IND	. 1401	IIIai L	outy, i	ייטו	iouvy	Duty
Mod	del CIMR-AA4A[]		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
Max	a. Applicable	ND	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Mot	or Capacity*1 kW	HD	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
ont	Rated Input	ND	2.1	4.3	5.9	8.1	9.4	14	20	24	38	44	52	58	71	86	105	142	170	207	248	300	346	410	465	657	922	1158
п	Current*2 A	HD	1.8	3.2	4.4	6	8.2	10.4	15	20	29	39	44	43	58	71	86	105	142	170	207	248	300	346	410	584	830	1031
	Rated Output	ND*4	1.6	3.1	4.1	5.3	6.7	8.5	13.3	17.5	24	29	34	44	55	67	78	106	126	159	191	226	276	316	392	514	709	915
	Capacity*3 kVA	HD	1.4*5	2.6*5	3.7*5	4.2*5	5.5*5	7*5	11.3*5	13.7*5	18.3*5	24*5	30*5	34*5	46*5	57*5	69*5	85*5	114*6	137*6	165*6	198*6	232*6	282*6	343*4	461*4	617*4	831*4
	Rated Output	ND*4	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23	31	38	44	58	72	88	103	139	165	208	250	296	362	414	515	675	930	1200
Ħ	Current A	HD	1.8*5	3.4*5	4.8*5	5.5*5	7.2*5	9.2*5	14.8*5	18*5	24*5	31*5	39*5	45*5	60*5	75*5	91*5	112*5	150*6	180*6	216*6	260*6	304*6	370*6	450*4	605*4	810*4	1090*4
Outpi	Overload To	ler-		-	ND F	Rating	g*7: 1	120%	of r	ated	outp	ut cu	irrent	for	60 s,	HD	Ratir	ng*7:	150°	% of	rated	d out	put c	urre	nt for	60 s	3	
dice (Detailing may be required for repetitive reads)																												
ance (Botaing may be required for repetitive loads)														Ήz														
	Max. Output V	oltage							Thi	ree-p	hase	e 380) to 4	-80 V	/ (rela	ative	to in	put v	olta(ge)							Input volta	age × 0.95
	Max. Output Free	quency												400	Hz*7												150) Hz
	Rated Voltage/Rated F	requency							Т	hree	-pha	ise 3	80 tc	480) Vac	50/6	60 H	z, 51	0 to (۱ 086	√dc*	8						
er	Allowable Voltage Fli	uctuation												-1	5% to	o +10)%											
owe	Allowable Frequency F	luctuation													±5	%												
ď	Power Supply	ND	2.3	4.3	6.1	8.1	10	14.4	19.4	28.4	37.5	46.6	54.9	53	64.9	78.6	96	130	156	189	227	274	316	375	416	601	843	1059
	kVA	HD	1.4	2.3	4.3	6.1	8.1	10	14.6	19.2	28.4	37.5	46.6	39.3	53	64.9	78.6	96	130	156	189	227	274	316	375	508	759	943
Harm	onic Suppression DC I	Reactor					C	Optio	n											В	uilt-i	n						
Brak	king Function Brakin	g Resistor						В	Built-i	n											C	Optio	n					
	·																											

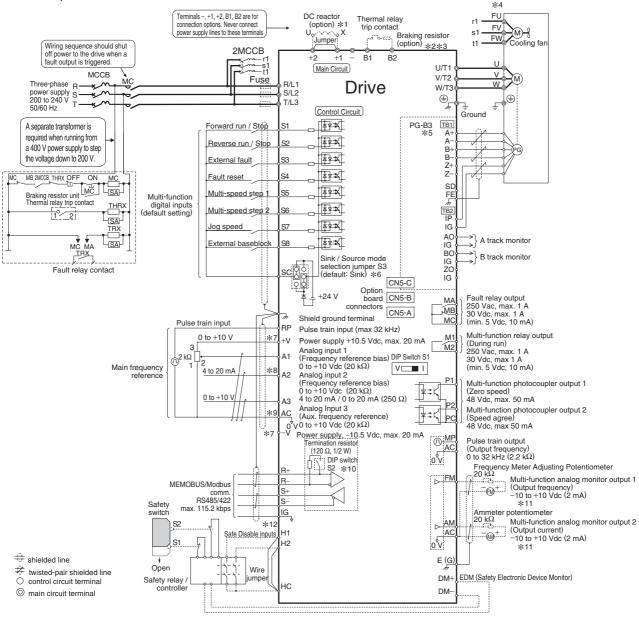
^{*1:} The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 400 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.

- *3: Rated output capacity is calculated with a rated output voltage of 440 V.
- *4: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.
- *5: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.
- *6: This value assumes a carrier frequency of 5 kHz. Increasing the carrier frequency requires a reduction in current.
- $*7$: Carrier frequency can be set by the user.
- *8: DC input power supply is not UL or CE certified.

^{*2:} Value displayed is for when operating at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, input side reactor, and wiring conditions.

Common Specifications

Co	mmon Specifications	
	Item	Specifications
	Control Method*1	V/f Control, V/f Control with PG, Open Loop Vector Control, Closed Loop Vector Control with PG, Open Loop Vector Control for PM, Advanced Open Loop Vector Control for PM, Closed Loop Vector Control for PM
	Frequency Control Range	0.01 to 400 Hz
	Frequency Accuracy	Digital reference: within $\pm 0.01\%$ of the max. output frequency (-10 to $+40^{\circ}$ C)
	(Temperature Fluctuation)	Analog reference: within $\pm 0.1\%$ of the max. output frequency (25°C ± 10 °C)
	Frequency Setting Resolution	Digital reference: 0.01 Hz Analog reference: 0.03 Hz / 60 Hz (11 bit)
	Output Frequency Resolution	0.001 Hz
	Frequency Setting Resolution	-10 to +10 V, 0 to +10 V, 4 to 20 mA, pulse train
	Starting Torque	150%/3 Hz (V/f Control and V/f Control with PG), 200%/0.3 Hz*2 (Open Loop Vector Control), 200%/0 r/min*2 (Closed Loop Vector Control, Closed Loop Vector Control for PM, and Advanced Open Loop Vector Control for PM), 100%/5% speed (Open Loop Vector Control for PM)
Control Characteristics	Speed Control Range	1:1500 (Closed Loop Vector Control and Closed Loop Vector Control for PM) 1:200 (Open Loop Vector Control) 1:40 (V/f Control and V/f Control with PG) 1:20 (Open Loop Vector Control for PM) 1:100 (Advanced Open Loop Vector Control for PM)
ırac	Consideration Assumption	· · · · ·
Cha	Speed Control Accuracy	±0.2% in Open Loop Vector Control (25°C ±10°C) *3, ±0.02% in Closed Loop Vector Control (25°C±10°C)
untrol	Speed Response	10 Hz in Open Loop Vector Control (25°C ±10°C), 50 Hz in Closed Loop Vector Control (25°C±10°C) (excludes temperature fluctuation when performing Rotational Auto-Tuning)
ပိ	Torque Limit	All vector control modes allow separate settings in four quadrants
	Accel/Decel Time	0.00 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque	Drives of 200/400 V 30 kW or less have a built-in braking transistor. ① Short-time decel torque*4: over 100% for 0.4/ 0.75 kW motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors (Overexcitation Deceleration, High Slip Braking: approx. 40%) ② Continuous regen. torque: approx. 20% (approx. 125% with dynamic braking resistor option*5: 10% ED,10 s
	V/f Characteristics	User-selected programs and V/f preset patterns possible
	Main Control Functions	Torque Control, Droop Control, Speed/Torque Control switch, Feed Forward Control, Zero Servo Control, Momentary Power Loss Ride-Thru, Speed Search, Overtorque detection, torque limit, 17 Step Speed (max.), accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-Tuning (rotational, stationary), Online Tuning, Dwell, cooling fan on/off switch, slip compensation, torque compensation, Frequency Jump, Upper/lower limits for frequency reference, DC Injection Braking at start and stop, Overexcitation Deceleration, High Slip Braking, PID control (with Sleep function), Energy Saving Control, MEMOBUS comm. (RS-485/422, max. 115.2 kbps), Fault Restart, Application Presets, DriveWorksEZ (customized functions), Removable Terminal Block with Parameter Backup
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200% of Heavy Duty rating
_	Overload Protection	Drive stops after 60 s at 150% of rated output current (Heavy Duty rating)*6
nction	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V, 400 V class: Stops when DC bus exceeds approx. 820 V
	Undervoltage Protection	200 V class: Stops when DC bus exceeds approx. 190 V, 400 V class: Stops when DC bus exceeds approx. 380 V
n F	Momentary Power Loss Ride-Thru	Stops immediately after 15 ms or longer power loss (default). Continuous operation during power up to 2 s (standard).*7
otic	Heatsink Overheat Protection	Thermistor
Protection Fu	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3% ED)
Δ.	Stall Prevention	Stall prevention during acceleration/deceleration and constant speed operation
	Ground Fault Protection	Protection by electronic circuit *8
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
	Area of Use	Indoors
±	Ambient Temperature	−10 to +50°C (open-chassis), −10 to +40°C (NEMA Type 1)
mer	Humidity	95% RH or less (no condensation)
Environment	Storage Temperature	-20 to +60°C (short-term temperature during transportation)
ivi	Altitude	Up to 1000 meters
Ш	Shock	10 Hz to 20 Hz, 9.8 m/s 2 max. 20 Hz to 55 Hz, 5.9 m/s ² (200 V: 45 kW or more, 400 V: 55 kW or more) or 2.0 m/s ² max. (200 V: 55 kW or less, 400 V: 75 kW or less)
Sta	ndards Compliant	UL 508C, EN61800-3, EN61800-5-1, EN954-1 Cat. 3, ISO 13849-1 (Cat. 3, PLd), IEC/EN61508 SIL2
_	tection Design	IP00 open-chassis, NEMA Type 1 enclosure


- *1: Currently developing PM motor compatibility for drives 450 kW and above (CIMR-AA4A0930/AA4A1200).
- *3: Speed control accuracy may vary slightly depending on installation conditions or motor used. Contact Yaskawa for details.
- ±4 : Momentary average deceleration torque refers to the deceleration torque from 60 Hz down to 0 Hz. This may vary depending on the motor.
- \$5: If L3-04 is enabled when using a braking resistor or braking resistor unit, the motor may not stop within the specified deceleration time.
- *6: Overload protection may be triggered when operating with 150% of the rated output current if the output frequency is less than 6 Hz.
- *7: Varies in accordance with drive capacity and load. Drives with a capacity of smaller than 11 kW in the 200 V (model: CIMR-AA2A0056) or 400 V (model: CIMR-AA4A0031) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s or longer.
- *8: Protection may not be provided under the following conditions as the motor windings are grounded internally during run:
 - · Low resistance to ground from the motor cable or terminal block. · Drive already has a short-circuit when the power is turned on.

Standard Connection Diagram

Standard Connection Diagram

Example: 200 V Class 3.7 kW

- *1: Remove the jumper when installing a DC reactor. Certain models come with a built-in DC reactor: CIMR-2A0110 and above, CIMR-4A0058 and above.
- *2: Make sure Stall Prevention is disabled (L3-04 = 0) whenever using a braking resistor. If left enabled, the drive may not stop within the specified deceleration time.

 *3: Enable the drive's braking resistor overload protection by setting L8-01 = 1 when using ERF type braking resistors. Wire the thermal overload relay between the
- drive and the braking resistor and connect this signal to a drive digital input. Use this input to trigger a fault in the drive in case of a braking resistor overload.
- *4: Self-cooling motors do not require wiring that would be necessary with motors using a cooling fan.
- *5: For control modes that do not use a motor speed feedback signal, PG option card wiring is not necessary.
- *6: This figure shows an example of a sequence input to \$1 through \$8 using a non-powered relay or an NPN transistor (0 V common/sink mode: default). When sequence connections by PNP transistor (+24 V common/source mode) or preparing a external +24 V power supply, refer to A1000 Technical Manual for details.
- The maximum output current capacity for the +V and -V terminals on the control circuit is 20 mA. Never short terminals +V, -V, and AC, as this can cause erroneous operation or damage the drive.
- *8: Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for voltage input.
- *9: Never connect to the AC terminal ground or chassis. This can result in erroneous operation or cause a fault.
- *10: Enable the termination resistor in the last drive in a MEMOBUS/Modbus network by setting DIP switch S2 to the ON position.
- *11: Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use these outputs in a feedback loop. *12: Disconnect the wire jumper between HC H1 and HC H2 when utilizing the Safe Disable input.
- - The sink/source setting for the Safe Disable input is the same as with the sequence input. Jumper S3 has the drive set for an external power supply. When not using the Safe Disable input feature, remove the jumper shorting the input and connect an external power supply.
- Time from input open to drive output stop is less than 1 ms. The wiring distance for the Safe Disable inputs should not exceed 30 m.

Note: When an Application Preset is selected, the drive I/O terminal functions change.

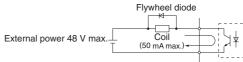
Control Circuit and Serial Communication Circuit Terminal Layout

MA	МВ	МС
M1	M2	E(G)

Terminal Functions

Main Circuit Terminals

Max. Applicable Motor Capacity indicates Heavy Duty


Voltage		200 V			400 V	
Model CIMR-AA	2A0004 to 2A0081	2A0110, 2A0138	2A0169 to 2A0415	4A0002 to 4A0044	4A0058, 4A0072	4A0088 to 4A1200
Max. Applicable Motor Capacity kW	0.4 to 18.5	22, 30	37 to 110	0.4 to 18.5	22, 30	37 to 560
R/L1, S/L2, T/L3	Mai	n circuit input power su	pply	Mai	n circuit input power su	pply
U/T1, V/T2, W/T3		Drive output			Drive output	
B1, B2	Braking re	sistor unit	_	Braking re	esistor unit	_
- +1 +2	· DC reactor (+1, +2) · DC power supply (+1, -)*	DC power supply (+1, -)*	DC power supply (+1, -)* Braking unit (+3, -)	· DC reactor (+1, +2) · DC power supply (+1, -)*	DC power supply (+1, -)*	DC power supply (+1, -)* Braking unit (+3, -)
+3	- Grou	und terminal (100 Ω or	loss)	- Gro	 	<u> </u>

^{*} DC power supply input terminals (+1, -) are not UL/cUL and CE certified.

Control Circuit Input Terminals (200 V/400 V Class)

Terminal Type	Termi- nal	Signal Function	Description	Signal Level
	S1	Multi-function input selection 1	Closed: Forward run (default) Open: Stop (default)	
	S2	Multi-function input selection 2	Closed: Reverse run (default) Open: Stop (default)	
	S3	Multi-function input selection 3	External fault, N.O. (default)	
Multi-Function	S4	Multi-function input selection 4	Fault reset (default)	
	S5	Multi-function input selection 5	Multi-step speed reference 1 (default)	Photocoupler 24 Vdc, 8 mA
Digital Input	S6	Multi-function input selection 6	Multi-step speed reference 2 (default)	
	S7	Multi-function input selection 7	Jog frequency (default)	
	S8	Multi-function input selection 8	Closed: External baseblock	
	SC	Multi-function input selection common	Multi-function input selection common	
	RP	Multi-function pulse train input	Frequency reference (default) (H6-01 = 0)	0 to 32 kHz (3 kΩ)
	+V	Setting power supply	+10.5 V power supply for analog reference (2	0 mA max.)
	-V	Setting power supply	-10.5 V power supply for analog reference (2	0 mA max.)
	A1	Multi-function analog input 1	-10 to +10 Vdc for -100 to 100%, 0 to +10 Vdc for 0 to 10	0% (impedance 20 kΩ), Main frequency reference (default)
Main Francisco			DIP switch S1 sets the terminal for a voltage or	current input signal
Main Frequen-	40	Mariki fara shiran sanalan ingarak O	-10 to +10 Vdc for -100 to +100%, 0 to +10 Vd	dc for 0 to 100% (impedance 20 k Ω)
cy Reference	A2	Multi-function analog input 2	4 to 20 mA for 0 to 100%, 0 to 20 mA for 0 to 10	00% (impedance 250 Ω)
Input			Added to the reference value of the analog frequency	·
	40	Mariki farashira sasalan isarah O	-10 to +10 Vdc for -100 to +100%, 0 to +10	Vdc for 0 to 100% (impedance 20 kΩ)
	A3	Multi-function analog input 3	Auxiliary frequency reference (default)	·
	AC	Frequency reference common	0 V	
	E(G)	Connection to wire shielding and option card ground wire	-	_
Multi-Function	P1	Multi-function photocoupler output (1)	Zero speed (default)	48 Vdc, 2 to 50 mA
Photocoupler	P2	Multi-function photocoupler output (2)	Speed agree (default)	Photocoupler output*1
Output	PC	Photocoupler output common	_	Priotocoupler output**
Fault Dalay	MA	N.O. output	Closed: Fault	
Fault Relay	MB	N.O. output	Open: Fault	Relay output
Output	MC	Digital output common	_	250 Vac, 10 mA to 1 A, 30 V, 10 mA to 1 A
Multi-Function	M1	Multi function digital autout	During run (default)	Minimum load: 5 Vdc, 10 mA
Digital Output*2	M2	Multi-function digital output	Closed: During run	
	MP	Pulse train input	Output frequency (default) (H6-06 = 102)	0 to 32 kHz (2.2 kΩ)
Manitau Outnut	FM	Multi-function analog monitor (1)	Output frequency (default)	0 to +10 Vdc for 0 to 100%
Monitor Output	AM	Multi-function analog monitor (2)	Output current (default)	-10 to 10 Vdc for -100 to 100%
	AC	Analog common	0 V	- 10 to 10 vac tot - 100 to 100%
	H1	Safety input 1	24 Vdc 8 mA. One or both open: Output disat	oled. Both closed: Normal operation.
Safety Input	H2	Safety input 2	Internal impedance 3.3 k Ω , switching time at	least 1 ms.
	HC	Safety input common	Safety input common	
Safety Monitor	DM+	Safety monitor output	Outputs status of Safe Disable function. Closed	49. Vda = 50 mA or loop
Output	DM-	Safety monitor output common	when both Safe Disable channels are closed.	48 Vdc, 50 mA or less

- \$1: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil. Diode must be rated higher than the circuit voltage.
- *2: Refrain from assigning functions to terminals M1 and M2 that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

Serial Communication Terminals (200 V/400 V Class)

Classification	Termi- nal	Signal Function	Description	Signal Level
MEMOBUS/	R+	Communications input (+)	MEMOBUS/Modbus communications: Use a	RS-422/485
MeMOBOS/ Modbus	R-	Communications input (–)	RS-485 or RS-422 cable to connect the	MEMOBUS/Modbus
Communica-	S+	Communications output (+)	drive.	communications protocol
tions	S-	Communications output (-)	drive.	115.2 kbps (max.)
lions	IG	Shield ground	0	V

Dimensions

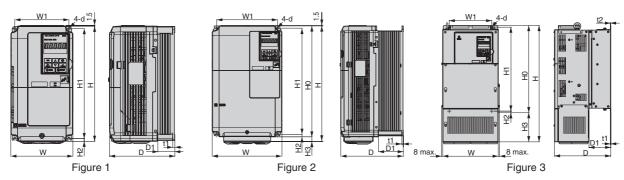
Enclosures

Enclosures of standard products vary depending on the model. Refer to the table below.

200 V Class

200 V Class															1	ND : N	Iormal	Duty,	HD:	Heavy	y Duty
Model CIMR-AA2A		0004	0006	8000	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max. Applicable	ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Motor Capacity (kW)	HD	0.4														110					
Enclosure Panel [NEMA T	Type 1	Standa	ard											Made	to orde	r					*
Open-Chassis [IP00]		Withou	ut top a	nd bot	tom co	vers								Stand	ard					Order-	made

^{*} NEMA 1 Type 1 is not available for this capacity.

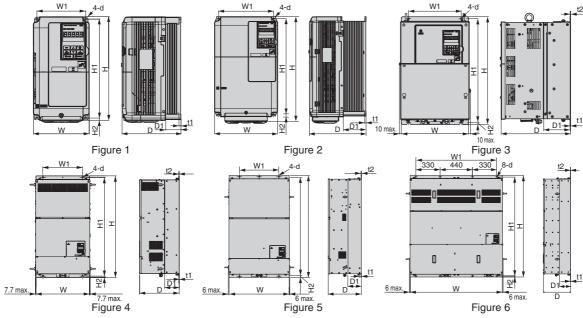

400 V Class

ND: Normal Duty, HD: Heavy Duty

																											-
Model CIMR-AA4A		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
Max. Applicable	ND	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Motor Capacity (kW)	HD	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
Enclosure Panel [NEMA T	Motor Capacity (kW) HD 0.4 0.75 1.5 2.2 3 3.7 5.5 7.5 11 15 Enclosure Panel [NEMA Type 1] Standard												Made	e to o	rder										*		
Open-Chassis [IP00]		With	out to	p and	d botte	om co	vers						Stan	dard									Orde	r-ma	de		

 * NEMA 1 Type 1 is not available for this capacity.

■ Enclosure Panel [NEMA Type 1]


200 V Class																	
Model	Max. Applicable Mo	otor Capacity (kW)	Figure					imens	sions (ı	mm)						Weight	Cooling
CIMR-AA2A: :: :: ::	Normal Duty	Heavy Duty	rigule	W	Н	D	W1	H0	H1	H2	H3	D1	t1	t2	d	(kg)	Cooling
0004	0.75	0.4														3.1	
0006	1.1	0.75														5.1	Self
0008	1.5	1.1		140	260	147	122	-	248	6	-	38	5	_			
0010	2.2	1.5														3.2	cooling
0012	3.0	2.2	-1												M5		
0018	3.7	3.0	'			164								_	IVIS	3.5	
0021	5.5	3.7		140	260	104	122	_	248	6	_	55	5	_		3.5	
0030	7.5	5.5		140	200	167	122	_	240	0	_	33	5	_		4.0	
0040	11	7.5												_			
0056	15	11		180	300	187	160	_	284	8	_	75	5	_		5.6	
0069	18.5	15	1	220	350	197	192	_	335	8	_	78	5	_		8.7	
0081	22	18.5	2	220	365	197	192	350	335	8	15	78	5	_		9.7	Fan
0110	30	22		254	534	258	195	400	385		134	100			М6	23	cooled
0138	37	30		279	614	250	220	450	435	7.5	164	100	2.3	2.3	IVIO	28	
0169	45	37		329	730	283	260	550	535	7.5	180	110	2.3	2.3		41	
0211	55	45	3	329	730	203	260	550	535		160	110				42	
0250	75	55		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	83	
0312	90	75						705	000	12.5	200	130	5.2	5.2	IVITO	88	
0360	110	90		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	108	

400 V Class

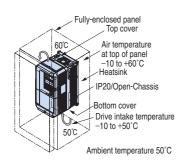
Model	Max. Applicable M	otor Capacity (kW)	Eiguro)imens	ions (i	mm)						Weight	Cooling
CIMR-AA4A:	Normal Duty	Heavy Duty	Figure	W	H	D	W1	H0	H1	H2	H3	D1	t1	t2	d	(kg)	Cooling
0002	0.75	0.4															Self
0004	1.5	0.75		140	260	147	122	-	248	6	_	38	5	-		3.2	
0005	2.2	1.5															cooling
0007	3.0	2.2														3.4	
0009	3.7	3.0				164									M5	3.5	
0011	5.5	3.7	1	140	260		122	-	248	6	_	55	5	-	IVIO	0.0	
0018	7.5	5.5														3.9	
0023	11	7.5				167]		
0031	15	11		180	300		160	_	284	8	_	55	5	_		5.4	
0038	18.5	15		100		187						75	3			5.7	
0044	22	18.5		220	350	197	192	_	335	8	_	78	5	_		8.3	
0058	30	22		254	465	258	195	400	385]	65	100		2.3		23	Fan
0072	37	30		279	515	258	220	450	435		03	100		2.0		27	cooled
0088	45	37			630	258		510	495	7.5	120	105	2.3	3.2	M6	39	
0103	55	45		329	030	250	260	310	495	7.5	120	103	2.3	5.2		39	
0139	75	55	3	323	730	283	200	550	535		180	110		2.3		45	
0165	90	75			730	200		550	555		100	110		2.5		46	
0208	110	90		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	87	
0250	132	110														106]
0296	160	132		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	112	
0362	185	160														117	

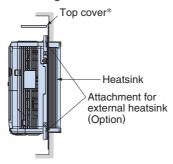
■Open-Chassis [IP00]

200 V Class															
Model	Max. Applicable M	otor Capacity (kW)	Figure					Dimensi	ons (mm)				Weight	Cooling
CIMR-AA2A : :: :: :: :: :: :: :: :: :: :: :: ::	Normal Duty	Heavy Duty	rigure	W	Н	D	W1	H1	H2	D1	t1	t2	d	(kg)	Cooling
0004	0.75	0.4												3.1	
0006	1.1	0.75												3.1	Self
8000	1.5	1.1		140	260	147	122	248	6	38	5	_			
0010	2.2	1.5												3.2	cooling
0012	3	2.2	1										M5		
0018	3.7	3	'			164							IVIO	3.5	
0021	5.5	3.7		140	260	104	122	248	6	55	5			3.5	
0030	7.5	5.5		140	200	167	122	240	0	55	5	_		4	
0040	11	7.5				167								4	
0056	15	11]	180	300	187	160	284	8	75	5	-		5.6	
0069	18.5	15	1	220	350	197	192	335	8	78	5	-		8.7	
0081	22	18.5	2	220	365	197	192	335	8	78	5	_		9.7	Fan
0110	30	22		250	400	258	195	385	7.5	100	2.3	2.3	M6	21	
0138	37	30]	275	450	256	220	435	7.5	100	2.3	2.3	IVIO	25	cooled
0169	45	37		325	550	283	260	535	7.5	110	2.3	2.3		37	
0211	55	45	3	323	550	203	200	555	7.5	110	2.0	2.3		38	
0250	75	55]	450	705	330	325	680	12.5	130	3.2	3.2	M10	76	
0312	90	75		400	705	330	325	080	12.5	130	5.2	3.2	IVITO	80	
0360	110	90		500	800	350	370	773	13	130	4.5	4.5	M12	98	
0415	110	110		500	300	330	370	113	13	130	4.5	4.5	IVIIZ	99	

400 V Class															
Model	Max. Applicable M	otor Capacity (kW)	Figure					Dimensi	ons (mm	1)				Weight	Cooling
CIMR-AA4A[[][[]]	Normal Duty	Heavy Duty	rigure	W	Η	D	W1	H1	H2	D1	t1	t2	d	(kg)	Cooling
0002	0.75	0.4													Self
0004	1.5	0.75		140	260	147	122	248	6	38	5	-		3.2	
0005	2.2	1.5													cooling
0007	3	2.2												3.4	
0009	3.7	3		140	260	164	122	248	6	55	5	-	M5	3.5	
0011	5.5	3.7	1										IVIO	3.5	
0018	7.5	5.5		140	260	167	122	248	6	55	5	_		3.9	
0023	11	7.5		140	200	107	122	240	0	55	5	_		3.9	
0031	15	11		180	300	167	160	284	8	55	5	_		5.4	
0038	18.5	15		100	300	187	160	204	0	75	5	_		5.7	
0044	22	18.5		220	350	197	192	335	8	78	5	-		8.3	
0058	30	22		250	400	258	195	385	7.5	100		2.3		21	
0072	37	30		275	450	236	220	435	7.5	100		2.3		25	
0088	45	37		325	510	258	260	495		105	2.3	3.2	M6	36	Fan
0103	55	45		323	510	250	200	493	7.5	103	2.3	3.2		30	cooled
0139	75	55	3	325	550	283	260	535	7.5	110		2.3		41	coolea
0165	90	75	ا	323	550	203	200	555		110		2.3		42	
0208	110	90		450	705	330	325	680	12.5	130	3.2	3.2	M10	79	
0250	132	110												96	
0296	160	132		500	800	350	370	773	13	130	4.5	4.5	M12	102	
0362	185	160												107	
0414	220	185	4	500	950		370	923	13	135				125	
0515	250	220	5	670	1140	370	440	1110	15	150	4.5	4.5	M12	221	
0675	355	315	5	670	1140		440	1110	15	150				221	
0930	500	450	6	1250	1380	370	1100	1345	15	150	4.5	4.5	M12	545	
1200	630	560		1250	1360	370	1100	1343	15	130	4.5	4.5	IVIIZ	555	

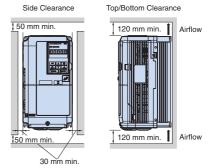
Fully-Enclosed Design


The Open-Chassis type drive can be installed in a fully-enclosed panel.


An open-chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to 50°C.

The heatsink can alternatively be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up.

Current derating or other steps to ensure cooling are required at 50°C


 $\cdot \ \, \text{Cooling Design for Fully-Closed Enclosure Panel} \quad \cdot \ \, \text{Mounting the External Heatsink}$

* Enclosure panel (CIMR-AA2A0004 to 0081, CIMR-AA4A0002 to 0044) can be installed with the top and bottom covers

· Ventilation Space

For installing the drive with capacity of 200 V class 22 kW or 400 V class 22kW, be sure to leave enough clearance during installation for suspension eye bolts on both side of the unit and main circuit wiring for maintenance.

Drive Watts Loss Data

200 V Class Normal Duty Ratings

				J		<i></i>																
	odel Number AA2A	;	0004	0006	8000	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Olivii t	MAZA																					
Max. Applica	able Motor Capacity	kW	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Rated O	utput Current*	Α	3.5	6	8	9.6	12	17.5	21	30	40	56	69	81	110	138	169	211	250	312	360	415
Llook	Heatsink	W	18	31	43	57	77	101	138	262	293	371	491	527	718	842	1014	1218	1764	2020	2698	2672
Heat	Internal	W	47	51	52	58	64	67	83	117	144	175	204	257	286	312	380	473	594	665	894	954
Loss	Total Heat Loss	W	65	82	95	115	141	168	221	379	437	546	696	784	1004	1154	1394	1691	2358	2685	3591	3626

400 V Class Normal Duty Ratings

	0.0.00					5	,-																					
Mo	odel Number		0002	0004	0005	0007	0000	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0130	0165	0208	0250	0206	0362	0/1/	0515	0675	0030	1200
CIMR-	AA4A		0002	0004	0003	0007	0003	0011	0010	0020	0001	0000	0044	0000	0072	0000	0100	0100	0103	0200	0230	0230	0002	0414	0010	0075	0330	1200
Max. Applica	able Motor Capacity	kW	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Rated O	utput Current*	Α	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23	31	38	44	58	72	88	103	139	165	208	250	296	362	414	515	675	930	1200
Heat	Heatsink	W	20	32	45	62	66	89	177	216	295	340	390	471	605	684	848	1215	1557	1800	2379	2448	3168	3443	4850	4861	8476	8572
	Internal	W	48	49	53	59	60	73	108	138	161	182	209	215	265	308	357	534	668	607	803	905	1130	1295	1668	2037	2952	3612
Loss	Total Heat Loss	W	68	81	98	121	126	162	285	354	456	522	599	686	870	992	1205	1749	2225	2407	3182	3353	4298	4738	6518	6898	11428	12184

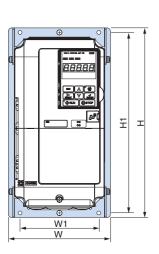
* Rated output current based on carrier frequency of 2 kHz.

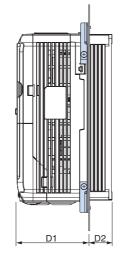
200 V Class Heavy Duty Ratings

200 0	Class i ic	Juv	y Du	ty itt	attirig	0																
	odel Number		0004	0006	0008	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
CIMR	-AA2A::::::			0000	0000	00.0	00.2	00.0	002.	0000	00.0	0000	0000	000.	00	0.00	0.00	02	0200	00.1	0000	00
Max. Applic	cable Motor Capacity	kW	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Rated C	output Current	Α	3.2*1	5*1	6.9*1	8*1	11*1	14*1	17.5*1	25*1	33*1	47*1	60*1	75*1	85*1	115*1	145*2	180*2	215*2	283*2	346*2	415*3
Heat	Heatsink	W	15	24	35	43	64	77	101	194	214	280	395	460	510	662	816	976	1514	1936	2564	2672
	Internal	W	44	48	49	52	58	60	67	92	105	130	163	221	211	250	306	378	466	588	783	954
Loss	Total Heat Loss	W	59	72	84	95	122	137	168	287	319	410	558	681	721	912	1122	1354	1980	2524	3347	3626

400 V Class Heavy Duty Ratings

Mo	odel Number		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	กดูสก	1200
CIMR-	AA4A		0002	0004	0000	0007	0000	0011	0010	0020	0001	0000	0044	0000	0072	0000	0100	0100	0100	0200	0200	0230	0002	דודט	0010	0075	0000	1200
Max. Applic	able Motor Capacity	kW	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
Rated O	utput Current	Α	1.8*1	3.4*1	4.8*1	5.5*1	7.2*1	9.2*1	14.8*1	18*1	24*1	31*1	39*1	45*1	60*1	75*1	91*1	112*1	150*2	180*2	216*2	260*2	304*2	370*2	450*3	605*3	810*3	1090*3
Heat	Heatsink	W	16	25	37	48	53	68	135	150	208	263	330	348	484	563	723	908	1340	1771	2360	2391	3075	3578	3972	4191	6912	7626
	Internal	W	45	46	49	53	55	61	86	97	115	141	179	170	217	254	299	416	580	541	715	787	985	1164	1386	1685	2455	3155
Loss	Total Heat Loss	W	61	71	86	101	108	129	221	247	323	404	509	518	701	817	1022	1324	1920	2312	3075	3178	4060	4742	5358	5876	9367	10781

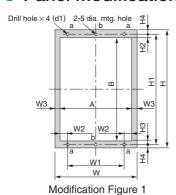

- *1: Rated output current based on carrier frequency of 8 kHz.
- *2: Rated output current based on carrier frequency of 5 kHz.
- *3: Rated output current based on carrier frequency of 2 kHz.

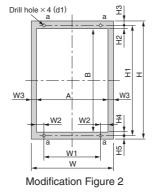


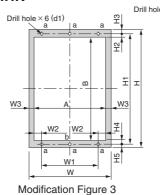
Attachment for External Heatsink

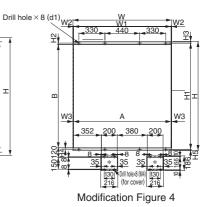
Additional attachments are required to install the following models: CIMR-AA2A0004 to 0081, CIMR-AA4A0002 to 0044. The final product will be wider and taller than the drive. Additional attachments are required for CIMR-AA2A0110 and above, CIMR-AA4A0058 and above.

Note: Contact Yaskawa for information on attachments for earlier models.


200 V Class


Model		D	imensi	on (mr	n)		Code No.
CIMR-AA2A:::::	W	Н	W1	H1	D1	D2	Code No.
2A0004							
2A0006							
2A0008					109	36.4	EZZ020800A
2A0010							
2A0012	158	294	122	280			
2A0018					109	53.4	
2A0021					109	55.4	EZZ020800B
2A0030					112	53.4	LZZ020000B
2A0040					112	55.4	
2A0056	198	329	160	315	112	73.4	EZZ020800C
2A0069	238	380	192	362	119	76.4	EZZ020800D
2A0081	230	300	192	302	119	70.4	EZZ020600D

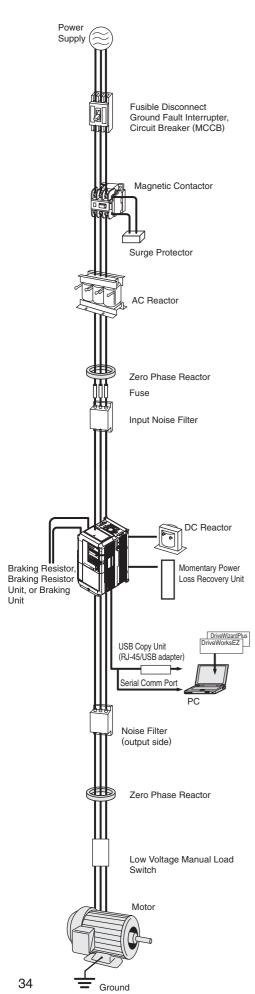

400 V Class


Model		D	imensi	on (mn	n)		Code No.
CIMR-AA4A:	W	Н	W1	H1	D1	D2	Code No.
4A0002							
4A0004					109	36.4	EZZ020800A
4A0005							
4A0007	158	294	122	280			
4A0009	100	294	122	200	109	53.4	
4A0011							EZZ020800B
4A0018					112	53.4	
4A0023					112	55.4	
4A0031	198	329	160	315	112	53.4	EZZ020800C
4A0038	130	329	100	315	112	73.4	LZZ0Z0000C
4A0044	238	380	192	362	119	76.4	EZZ020800D

Panel Modification for External Heatsink

* Panel opening needed to replace an air filter installed to the bottom of the drive. The opening should be kept as small as possible.

200 V Class


Model	Modifi-					D	imen	sions	s (mn	n)				
CIMR-AA:	cation Figure	W	Н	W1	W2	W3	H1	H2	НЗ	H4	H5	Α	В	d1
2A0004														
2A0006														
2A0008														
2A0010														
2A0012		158	294	122	9	9	280	8.5	8.5	7	-	140	263	M5
2A0018	1													
2A0021	'													
2A0030														
2A0040														
2A0056		198	329	160	10	9	315	17.5	10.5	7	_	180	287	M5
2A0069		238	380	192	14	9	362	13	8	9	_	220	341	
2A0081		230	300	192	14	Э	302	10	0	9		220	541	
2A0110		250	400	195	19.5	8	385	8	7.5	8	7.5	234	369	М6
2A0138		275	450	220	19.5	0	435	0	7.5	0	7.5	259	419	IVIO
2A0169		325	550	260	24.5	8	535	8	7.5	8	7.5	309	510	
2A0211	2	323	330	200	24.5	0	333	0	7.5	0	7.5	309	515	
2A0250	-	450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
2A0312		430	705	323	54.5	0	000	12.5	12.5	12.5	12.5	434	000	IVI I U
2A0360		500	800	370	57	8	773	16	14	17	13	484	740	M10
2A0415		500	000	370	57	0	113	10	14	17	13	404	740	IVI 12

400 V Class

Model	Modifi- cation					D	imen	sions	s (mr	n)				
CIMR-AA:	Figure	W	Н	W1	W2	W3	H1	H2	НЗ	H4	H5	Α	В	d1
4A0002														
4A0004														
4A0005														
4A0007		150	294	100	9	9	280	8.5	8.5	7	_	140	263	
4A0009		156	294	122	9	9	200	0.5	0.5	l ′		140	203	M5
4A0011	1													IVIO
4A0018														
4A0023														
4A0031		198	329	160	10	9	215	17.5	10 5	7		180	287	
4A0038		190	329	160	10	9	313	17.5	10.5	_ ′		100	201	
4A0044		238	380	192	14	9	362	13	8	9	_	220	341	M6
4A0058		250	400	195	19.5	8	385	8	7.5	8	7.5	234	369	М6
4A0072		275	450	220	19.5	0	435	0	7.5	0	7.5	259	419	IVIO
4A0088			510				495						479	
4A0103		325	510	260	24.5	8	495	8	7.5	8	7.5	309	479	М6
4A0139		323	550	200	24.5	0	535	0	7.5	0	7.5	309	519	IVIO
4A0165	2		550				555						519	
4A0208		450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
4A0250														
4A0296		500	800	370	57	8	773	16	14	17	13	484	740	M12
4A0362														
4A0414		500	950	370	57	8	923	16	14	17	13	484	890	M12
4A0515	3	670	1140	110	107	8	1110	19	15	19	15	654	1072	M12
4A0675		070	1140	0	107	0	1110	19	13	19	13	034	10/2	IVITZ
4A0930	4	1250	1380	1100	67	8	1345	19	20	19	15	1234	1307	M12
4A1200		1.200	1.000	1.00	<u> ۲</u>		1040					.204	1.007	2

Peripheral Devices and Options

Name	Purpose	Model, Manufacturer	Page
Ground Fault Interrupter (GFI)	Protects the drive from ground faults that could otherwise result in electric shock or fire. Choose a GFI designed to minimize harmonics specifically for AC drives. Should	Recommended: NV series by Mitsubishi Electric Corporation EG, SG series by Fuji	_
Circuit Dracker	have a current rating of at least 30 mA. Protects circuitry from excessive current. A circuit breaker	Electric FA Components & Systems Co., Ltd Recommended:	200
Circuit Breaker	should be installed between the main power supply and an AC reactor. Interrupts the power supply to the drive. In addition to	NF series by Mitsubishi Electric Corporation Recommended:	36
Magnetic Contactor	protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used.	SC series by Fuji Electric FA Components & Systems Co., Ltd	36
Surge Protector	Absorbs the voltage surge from switching of electro-magnetic contactors and control relays. Install a surge protector to the magnetic contactors and control relays as well as magnetic valves and magnetic braking coil. Improve the input power ratio of the drive. The DC reactor is a built-in	DCR2 series RFN series by Nippon Chemi- con Corporation	37
DC Reactor	improve the input power ratio of the drive. The DC reactor is a built-in model of 22 kW or more. Option: 18.5 kW or less. - Used for harmonic current suppression and total improving power factor.	UZDA series	38
AC Reactor	Should be used if the power supply capacity is larger than 600 kVA. - Suppresses harmonic current - Improves the power factor of the input power supply	UZBA series	40
Zero Phase Reactor	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides.	F6045GB F11080GB by Hitachi Metals, Ltd. CR2LS series	42
Fuse / Fuse Holder	Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Note: Refer to the instruction manual for information on UL approval.	CR6L series CM, CMS series by Fuji Electric FA Compo- nents & Systems Co., Ltd	43
Capacitor-Type Noise Filter	Reduces noise from the line that enters into the drive input power system. The noise filter can be used in combination with a zero-phase reactor. Note: Available for drive input only. Do not connect the noise filter to the output terminals.	3XYG 1003 by Okaya Electric Industries Co., Ltd.	43
Input Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Note: For CE Marking (EMC Directive) compliant models, refer to A1000 Technical Manual.	LNFD series LNFB series FN series	44
Output Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LF series by NEC Tokin Corporation	46
Braking Resistor Attachment for Braking	Used to shorten the deceleration time by dissipating regenerative energy through a resistor. Usage 3% ED, requires a separate attachment.	ERF-150WJ series CF120-B579 series	48
Resistor	A braking resistor can be attached to the drive. Used to shorten the deceleration time by dissipating	EZZ020805A	51
Braking Resistor Unit	regenerative energy through a resistor unit (10% ED). A thermal overload relay is built in (10% ED).	LKEB series	48
Braking Unit	Shortened deceleration time results when used with a Braking Resistor Unit. Provides power supply for the control circuit and option	CDBR series PS-A10H	48
24 V Power Supply	boards. Note: Parameter settings cannot be changed when the drive is operating solely from this power supply.	PS-A10L	47
VS System Module	System control device that enables optimum system configura- tion by combining modules for automatic control system. Can copy parameter settings easily and quickly to be	JGSM series	52
USB Copy Unit (RJ-45/ USB compatible plug)	later transferred to another drive. Adapter for connecting the drive to the USB port of a PC	JVOP-181	55
Support Tools USB Cable	Connect the drive and PC when using DriveWizard or DriveWorksEZ. The cable length must be 3 m or less. For easier operation when using the optional LCD	Commercially available USB2.0 A/B cable.	_
LCD Operator	operator. Allows for remote operation. Includes a Copy function for saving drive settings.	JVOP-180	54
LCD Operator Extension Cable	Cable for connecting the LCD operator.	WV001: 1 m WV003: 3 m	54
Momentary Power Loss Recovery Unit Frequency Meter, Current Meter	Ensures continuous drive operation for a power loss of up to 2 s.	P0010 Type (200 V class) P0020 Type (400 V class) DCF-6A	47 56
Variable Resistor Board (20 kΩ)		ETX003120	56
Frequency Setting Potentiometer (2 kΩ) Frequency Meter Adjusting	Allows the user to set and monitor the frequency,	RH000739	56
Frequency Meter Adjusting Potentiometer (20 kΩ) Control Dial for Frequency	current, and voltage using an external device.	RH000850	56
Setting Potentiometer		CM-3S	56
Output Voltage Meter Attachment for External Heatsink	Required for heatsink installation. Current derating may be needed when using a heatsink.	SCF-12NH –	57 33
Low Voltage Manual Load Switch	Prevents shock from the voltage created on the terminals board from a coasting synchronous motor.	Recommended: AICUT, LB series by Aichi Elec- tric Works Co., Ltd	_
	1		

Note: Contact the manufacturer in question for availability and specifications of non-Yaskawa products.

Option Cards

Ту	ре	Name	Model	Function	Manual No.
	Speed Reference Card	Analog Input	AI-A3	Enables high-precision and high-resolution analog speed reference setting. • Input signal level: -10 to $+10$ Vdc $(20 \text{ k}\Omega)$ 4 to 20 mA (500Ω) • Input channels: 3 channels, DIP switch for input voltage/input current selection • Input resolution: Input voltage 13 bit signed $(1/8192)$ Input current $1/6554$	TOBPC73060038
	Speed F	Digital Input	DI-A3	Enables 16-bit digital speed reference setting. Input signal: 16 bit binary, 2 digit BCD + sign signal + set signal Input voltage: +24 V (isolated) Input current: 8 mA User-set: 8 bit, 12 bit, 16 bit	TOBPC73060039
		DeviceNet Interface	SI-N3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060043
		RoHS	01110	DeviceNet communication with the host controller.	SIEPC73060043
		CC-Link Interface	SI-C3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060044
	Card	RoHS compliant	01 00	CC-Link communication with the host controller.	SIEPC73060044
	Option	PROFIBUS-DP	SI-P3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060042
<u>.</u>	ns Op	Interface RoHS compliant	0110	CANopen communication with the host controller.	SIEPC73060042
nectc	Communications	CANopen Interface	SI-S3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through	TOBPC73060045
con	ımuni	RoHS compliant	31 33	CANopen communication with the host controller.	SIEPC73060045
ted to	Con	MECHATROLINK-II Interface	SI-T3	Used for running or stopping the drive, setting or referencing parameters,	TOBPC73060050
nnec		SI-T3	31-13	and monitoring output frequency, output current, or similar items through MECHATROLINK-II communication with the host controller.	SIEPC73060050
Built-in Type (connected to connector)		LONWORKS Interface	Available soon	Used for HVAC control, running or stopping the drive, setting or referencing parameters, and monitoring output current, watt-hours, or similar items through LONWORKS communications with the host controller.	-
Built-	Option Card	Analog Monitor	AO-A3	Outputs analog signal for monitoring drive output state (output freq., output current etc.). Output resolution: 11 bit signed (1/2048) Output voltage: -10 to +10 Vdc (non-isolated) Terminals: 2 analog outputs	TOBPC73060040
	Monitor O	Digital Output	DO-A3	Outputs isolated type digital signal for monitoring drive run state (alarm signal, zero speed detection, etc.) • Terminals: 6 photocoupler outputs (48 V, 50 mA or less) 2 relay contact outputs (250 Vac, 1 A or less 30 Vdc, 1 A or less)	TOBPC73060041
	Speed Controller Card	Complimentary Type PG RoHS compliant	PG-B3	For control modes requiring a PG encoder for motor feedback. · Phase A, B, and Z pulse (3-phase) inputs (complementary type) · Max. input frequency: 50 kHz · Pulse monitor output: Open collector, +24 V, max. current 30 mA · Power supply output for PG: +12 V, max. current 200 mA	TOBPC73060036
	PG Speed Co	Line Driver PG RoHS compliant	PG-X3	For control modes requiring a PG encoder for motor feedback. · Phase A, B, and Z pulse (differential pulse) inputs (RS-422) · Max. input frequency: 300 kHz · Pulse monitor output: RS-422 · Power supply output for PG: +5 V or +12 V, max. current 200 mA	TOBPC73060037

Note: 1. Each communication option card requires a separate configuration file to link to the network. 2. PG speed controller card is required for PG control.

Peripheral Devices and Options (continued)

Circuit Breaker, Magnetic Contactor

Base device selection on motor capacity.

Circuit Breaker [Mitsubishi Electric Corporation]

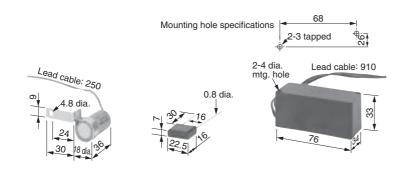
Magnetic Contactor [Fuji Electric FA Components & Systems Co., Ltd]

200 V Class

Motor		Circuit I	Breaker			Magnetic	Contactor	
Capacity	Without	Reactor	With F	Reactor	Without	Reactor	With F	Reactor
(kW)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)
0.4	NF32	5	NF32	5	SC-03	11	SC-03	11
0.75	NF32	10	NF32	10	SC-05	13	SC-03	11
1.5	NF32	15	NF32	10	SC-4-0	18	SC-05	13
2.2	NF32	20	NF32	15	SC-N1	26	SC-4-0	18
3.7	NF32	30	NF32	20	SC-N2	35	SC-N1	26
5.5	NF63	50	NF63	40	SC-N2S	50	SC-N2	35
7.5	NF125	60	NF63	50	SC-N3	65	SC-N2S	50
11	NF125	75	NF125	75	SC-N4	80	SC-N4	80
15	NF250	125	NF125	100	SC-N5	93	SC-N4	80
18.5	NF250	150	NF250	125	SC-N5	93	SC-N5	93
22	_	_	NF250	150	_	_	SC-N6	125
30	-	-	NF250	175	-	-	SC-N7	152
37	_	_	NF250	225	_	_	SC-N8	180
45	_	_	NF400	250	_	_	SC-N10	220
55	-	-	NF400	300	-	-	SC-N11	300
75	_	_	NF400	400	_	-	SC-N12	400
90	_	_	NF630	500	-	-	SC-N12	400
110	_	_	NF630	600	_	-	SC-N14	600

Note: To improve the input power factor, 200 V class drives larger than 22 kW come standard with a built-in DC reactor.

400 V Class


Motor		Circuit I	Breaker			Magnetic	Contactor	
Capacity	Without	Reactor	With F	Reactor	Without	Reactor	With F	Reactor
(kW)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)
0.4	NF32	3	NF32	3	SC-03	7	SC-03	7
0.75	NF32	5	NF32	5	SC-03	7	SC-03	7
1.5	NF32	10	NF32	10	SC-05	9	SC-05	9
2.2	NF32	15	NF32	10	SC-4-0	13	SC-4-0	13
3.7	NF32	20	NF32	15	SC-4-1	17	SC-4-1	17
5.5	NF32	30	NF32	20	SC-N2	32	SC-N1	25
7.5	NF32	30	NF32	30	SC-N2S	48	SC-N2	32
11	NF63	50	NF63	40	SC-N2S	48	SC-N2S	48
15	NF125	60	NF63	50	SC-N3	65	SC-N2S	48
18.5	NF125	75	NF125	60	SC-N3	65	SC-N3	65
22	_	_	NF125	75	_	_	SC-N4	80
30	_	_	NF125	100	-	_	SC-N4	80
37	_	_	NF250	125	-	_	SC-N5	90
45	_	_	NF250	150	_	_	SC-N6	110
55	_	_	NF250	175	_	_	SC-N7	150
75	_	-	NF250	225	-	_	SC-N8	180
90	_	_	NF400	250	_	_	SC-N10	220
110	_	_	NF400	300	_	_	SC-N11	300
132	_	_	NF400	350	_	_	SC-N11	300
160	_	_	NF400	400	_	_	SC-N12	400
185	_	_	NF630	500	_	_	SC-N12	400
220	_	-	NF630	630	-	_	SC-N14	600
250	_	_	NF630	630	_	_	SC-N14	600
315	_	_	NF800	800	_	_	SC-N16	800
355	_	_	NF800	800	_	_	SC-N16	800
450	_	-	NF1000	1000	_	_	SC-N14 × 2*1	600*2
500	-	-	NF1250	1250	_	_	SC-N14 × 2*1	600*2
560	_	_	NF1600	1600	_	_	SC-N16 × 2*1	800*2
630	_	_	NF1600	1600	_	_	SC-N16 × 2*1	800*2

^{*1:} When two units are connected in parallel.*2: Rated current for a single unit.

Surge Protector

Dimensions (mm)

Weight: 22 g Weight: 5 g Model: DCR2-50A22E Model: DCR2-10A25C

Weight: 150 g Model: RFN3AL504KD

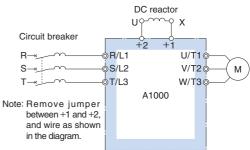
[Nippon Chemi-Con Corporation]

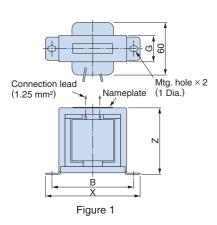
Product Line

Peripheral Device	ces	Surge Protector	Model	Specifications	Code No.
		Large-Capacity Coil (other than relay)	DCR2-50A22E	220 Vac 0.5 μ F+200 Ω	C002417
200 to 230 V	Control Relay	MY2. MY3 [Omron Corporation] MM2. MM4 [Omron Corporation] HH22, HH23 [Fuji Electric FA Components & Systems Co., Ltd]	DCR2-10A25C	250 Vac 0.1 <i>μ</i> F+100 Ω	C002482
		380 to 460 V	RFN3AL504KD	1000 Vdc 0.5 μ F+220 Ω	C002630

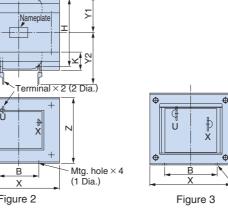
DC Reactor (UZDA-B for DC circuit)

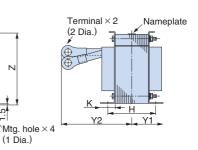
Base device selection on motor capacity.


Lead Wire Type


Power Supply Capacity (kVA) 4000 Reactor required 600 Reactor unnecessary Drive Capacity (kVA) Note: Reactor recommended for power

supplies larger than 600 kVA.


Connection Diagram



Dimensions (mm)

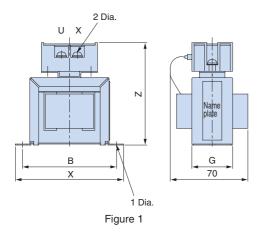
Γerminal × 2 (2 Dia.) ₩ ₽ X Mtg. hole × 4 В (1 Dia.) Figure 2

200 V Class

200 V C	ıass																
Motor									Dimer	nsions						Watt	Wire
Capacity	Current	Inductance	Code No.	Figure					(m	m)					Weight	Loss	Gauge*1
(kW)	(A)	(mH)			Χ	Y2	Y1	Z	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)	(mm ²)
0.4	5.4	8	X010048	1	85	_	_	53	74	_	-	32	M4	_	0.8	8	2
0.75	5.4	8	X010048	1	85	_	_	53	74	_	_	32	M4	_	0.8	8	2
1.5	18	3	X010049	2	86	80	36	76	60	55	18	_	M4	M5	2	18	5.5
2.2	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
3.7	18	3	X010049	2	86	80	36	76	60	55	18	_	M4	M5	2	18	5.5
5.5	36	1	X010050	2	105	90	46	93	64	80	26	_	M6	M6	3.2	22	8
7.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11	72	0.5	X010051	2	105	105	56	93	64	100	26	_	M6	M8	4.9	29	30
15	72	0.5	X010051	2	105	105	56	93	64	100	26	_	M6	M8	4.9	29	30
18.5	90	0.4	X010176	2	133	120	52.5	117	86	80	25	_	M6	M8	6.5	45	30
22*2	105	0.3	300-028-140	3	133	120	52.5	117	86	80	25	_	M6	M10	8	55	50
22 to 110							В	uilt-in									

- *1: Cable: Indoor PVC (75°C), ambient temperature 45°C, 3 lines max.
- *2: Select a motor of this capacity when using a CIMR-AA2A0081.

400 V C	lagg																
Motor									Dimer	nsions						Watt	Wire
Capacity	Current	Inductance	Code No.	Figure					(m	m)					Weight	Loss	Gauge*1
(kW)	(A)	(mH)			Χ	Y2	Y1	Z	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)	(mm ²)
0.4	3.2	28	X010052	1	85	_	-	53	74	_	_	32	M4	-	0.8	9	2
0.75	3.2	28	X010052	1	85	_	-	53	74	_	-	32	M4	_	0.8	9	2
1.5	5.7	11	X010053	1	90	_	-	60	80	_	_	32	M4	-	1	11	2
2.2	5.7	11	X010053	1	90	_	-	60	80	_	_	32	M4	_	1	11	2
3.7	12	6.3	X010054	2	86	80	36	76	60	55	18	_	M4	M5	2	16	2
5.5	23	3.6	X010055	2	105	90	46	93	64	80	26	_	M6	M5	3.2	27	5.5
7.5	23	3.6	X010055	2	105	90	46	93	64	80	26	_	M6	M5	3.2	27	5.5
11	33	1.9	X010056	2	105	95	51	93	64	90	26	_	M6	M6	4	26	8
15	33	1.9	X010056	2	105	95	51	93	64	90	26	_	M6	M6	4	26	8
18.5	47	1.3	X010177	2	115	125	57.5	100	72	90	25	_	M6	M6	6	42	14
22*2	56	1	300-028-141	3	133	105	52.5	117	86	80	25	_	M6	M6	7	50	22
22 to 630							В	uilt-in									


- *1: Cable: Indoor PVC (75°C), ambient temperature 45°C, 3 lines max.
- *2: Select a motor of this capacity when using a CIMR-AA4A0044.

Terminal Type

Dimensions (mm)

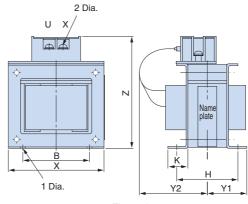


Figure 2

200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Z	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4 0.75	5.4	8	300-027-130	1	85	_	_	81	74	_	_	32	M4	M4	0.8	8
1.5 2.2 3.7	18	3	300-027-131		86	84	36	101	60	55	18	-	M4	M4	2	18
5.5 7.5	36	1	300-027-132	2	105	94	46	129	64	80	26	-	M6	M4	3.2	22
11 15	72	0.5	300-027-133		105	124	56	135	64	100	26	_	M6	M6	4.9	29
18.5	90	0.4	300-027-139		133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Z	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4	3.2	28	300-027-134		85	_	_	81	74	_	_	32	M4	M4	0.8	9
0.75	0.2			1				•							0.0	
1.5	5.7	11	300-027-135	I	90	_	_	88	80	_	_	32	M4	M4	1	11
2.2	0.7		000 027 100					00				02	101-7	IVI		
3.7	12	6.3	300-027-136		86	84	36	101	60	55	18	_	M4	M4	2	16
5.5	23	3.6	300-027-137		105	104	46	118	64	80	26	_	M6	M4	3.2	27
7.5	23	3.0	300-027-137	2	103	104	40	110	04	80	20		IVIO	1014	3.2	21
11	33	1.9	300-027-138	2	105	109	51	129	64	90	26	_	M6	M4	4	26
15	33	1.9	300-027-130		103	109	31	129	04	90	20		IVIO	1014	4	20
18.5	47	1.3	300-027-140		115	142.5	57.5	136	72	90	25	_	M6	M5	6	42

AC Reactor (UZBA-B for 50/60 Hz Input)

Base device selection on motor capacity. Lead Wire Type

Dimensions (mm)

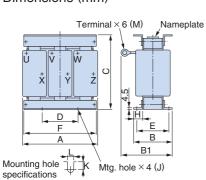
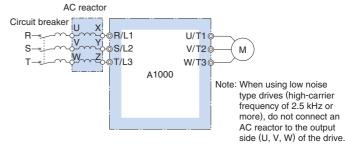
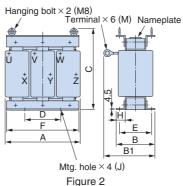




Figure 1

Connection Diagram

Hanging bolt × 2 (M8)

Terminal × 6 (M)

Nameplate

Nameplate

Mtg. hole × 4 (J)

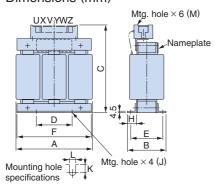
Figure 3

200 V Class

200 V O	lass																	
Motor										Dimen	sions							Watt
Capacity	Current	Inductance	Code No.	Figure						(mr	m)						Weight	Loss
(kW)	(A)	(mH)			Α	В	B1	С	D	Е	F	Н	J	K	L	М	(kg)	(W)
3.7	20	0.53	X002491			88	114			70				11.5		M5	3	35
5.5	30	0.35	X002492		130	00	119	105	50	70	130	22	M6	9	7	IVIS	3	45
7.5	40	0.265	X002493			98	139			80				11.5		M6	4	50
11	60	0.18	X002495		160	105	147.5	130	75	85	160	25	M6	10	7	M6	6	65
15	80	0.13	X002497				155									M8		75
18.5	90	0.12	X002498	4	180	100	150	150	75	80	180	25	M6	10	7	IVIO	8	90
22	120	0.09	X002555	'			155									M10		90
30	160	0.07	X002556		210	100	170	175	75	80	205	25	M6	10	7	M10	12	100
37	200	0.05	X002557		210	115	183	175	75	95	203	25	IVIO	10	,	IVITO	15	110
45	240	0.044	X002558		240	126	218	215±5	150	110	240	25	M6	8	7	M10	23	125
55	280	0.038	X002559		240	120	210	215±5	150	110	240	25	M8	0	10	M12	23	130
75	360	0.026	X002560		270	162	241	230±5	150	130	260	40	M8	16	10	M12	32	145
90	500	0.02	X010145	2	330	162	286	315±5	150	130	320	40	M10	16	10	M12	55	200
110	500	0.02	X010145		330	102	200	31315	130	130	320	40	IVITO	10	10	IVITZ	55	200

Motor Capacity	Current	Inductance	Code No.	Figure						Dimer (m							Weight	Watt Loss
(kW)	(A)	(mH)	00001101	i iguio	Α	В	B1	С	D	E	F	Н	J	K	L	М	(kg)	(W)
7.5	20	1.06	X002502		160	90	115	130	75	70	160	25	M6	10	7	M5	5	50
11	30	0.7	X002503		160	105	132.5	130	75	85	160	25	IVIO	10	/	IVIS	6	65
15	40	0.53	X002504				140										8	
18.5	50	0.42	X002505		180	100	145	150	75	80	180	25	M6	10	7	M6	0	90
22	60	0.36	X002506				150										8.5	
30	80	0.26	X002508		210	100	150	175	75	80	205	25	M6	10	7	M8	12	95
37	90	0.24	X002509	4	210	115	178	175	75	95	203	25	IVIO	10	,	IVIO	15	110
45	120	0.18	X002566	'	240	126	193	205±5	150	110	240	25	M8	8	10	M10	23	130
55	150	0.15	X002567		240	120	198	200-5	150	110	240	25	IVIO	0	10	IVITO	23	150
75	200	0.11	X002568		270	162	231	230±5	150	130	260	40	M8	16	10	M10	32	135
90	250	0.09	X002569		270	102	231	230±3	150	130	200	40	IVIO	10	10	IVITO	32	133
110	250	0.09	X002569		270	162	231	230±5	150	130	260	40	M8	16	10	M10	32	135
132	330	0.06	X002570		320	165	253	230±5	150	130	320	40	M10	17.5	12	M12	55	200
160	330	0.06	X002570		320	103	255	230±3	150	130	320	40	IVITO	17.5	12	IVIIZ	33	200
185	490	0.04	X002690															
220	490	0.04	X002690	2	330	176	293	315±5	150	150	320	40	M10	13	12	M12	60	340
250	490	0.04	X002690															
315	660	0.03	X002691	3	330	216	353	315±5	150	185	320	40	M10	15.5	18	M16	80	310
355	660	0.03	X002691	3	330	210	333	31315	130	105	320	40	IVITO	13.5	10	IVITO	00	310
450	490*1	0.04	X002690×2*2	2	330	176	293	315±5	150	150	320	40	M10	13	12	M12	60	340
500	490*1	0.04	X002690×2*2		330	176	293	313±5	130	150	320	40	IVITO	13	12	IVI I Z	60	340
560	660*1	0.03	X002691 × 2*2	3	330	216	353	315±5	150	185	320	40	M10	15.5	18	M16	80	310
630	660*1	0.03	X002691 × 2*2	٥	330	210	333	313-5	130	100	320	40	IVITO	15.5	10	IVITO	00	310

^{*1:} Rated current for a single unit.


^{*2:} When two units are connected in parallel.

Terminal Type

Dimensions (mm)

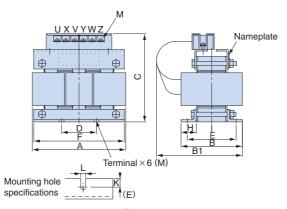


Figure 1

Figure 2

200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						Dimen (m)							Weight	Watt Loss
(kW)	(A)	(mH)		3	Α	В	B1	С	D	E	F	Н	J	K	L	М	(kg)	(W)
0.4	2.5	4.2	X002553		120	71		120	40	50	105	20		10.5			2.5	15
0.75	5	2.1	X002554	4	120	/ 1	_	120	40	50	105	20		10.5	7		2.5	15
1.5	10	1.1	X002489	'	130	88	_	130	50	70	130	22		11.5	/	M4	3	25
2.2	15	0.71	X002490		130	00		130	50	70	130	22		11.5		IVI4	3	30
3.7	20	0.53	300-027-120		135	88	140	130	50	70	130	22	M6	_			3	35
5.5	30	0.35	300-027-121		133	00	150	130	50	70	130	22	IVIO	9			3	45
7.5	40	0.265	300-027-122	2	135	98	160	140	50	80	130	22		11.5	7	M5	4	50
11	60	0.18	300-027-123		165	105	185	170	75	85	160	25		10	,	M6	6	65
15	80	0.13	300-027-124		185	100	180	195	75	80	180	25		10		M6	8	75
18.5	90	0.12	300-027-125		100	100	100	133	75	00	100	20		10		IVIO	0	90

Motor	Current	Industra	Code No.	Гівшив						Dimen (m)							\\/aiabt	Watt
Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	A	В	B1		D	E	m) =	Н	1	К	1	М	Weight (kg)	Loss (W)
. ,			V000504		A	В	ы	U	D	L		11	J	IX.	L	IVI	(kg)	(V V)
0.4	1.3	18	X002561		120	71		120	40	50	105	20		10.5			2.5	15
0.75	2.5	8.4	X002562		120	' '		120	40	30	103	20		10.5			2.5	15
1.5	5	4.2	X002563				_							9	7	M4		25
2.2	7.5	3.6	X002564	'	130	88	_	130	50	70	130	22		9	1	IVI4	3	25
3.7	10	2.2	X002500		130			130	50		130	22	M6	11.5				40
5.5	15	1.42	X002501			98				80]		IVIO	11.5			4	50
7.5	20	1.06	300-027-126		165	90	160	155		70	160					M4	5	50
11	30	0.7	300-027-127	2	105	105	175	155	75	85	100	25		10	7	IVI	6	65
15	40	0.53	300-027-128		185	100	170	185	15	80	180	25		10	/	M5	8	90
18.5	50	0.42	300-027-129		100	100	170	100		00	100					CIVI	٥	90

Zero Phase Reactor

Zero-phase reactor should match wire gauge.*

* Current values for wire gauges may vary based on electrical codes. The table below lists selections based on Japanese electrical standards and Yaskawa's ND rating. Contact Yaskawa for questions regarding UL.

Finemet Zero-Phase Reactor to Reduce Radio Noise

Note: Finemet is a registered trademark of Hitachi Metals, Ltd.

[Hitachi Metals, Ltd.]

Connection Diagram

Compatible with the input and output side of the drive.

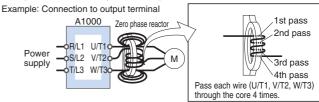
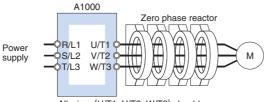
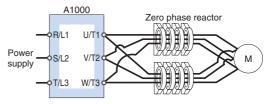
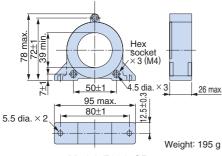
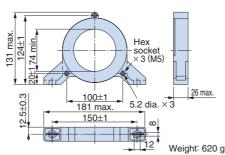




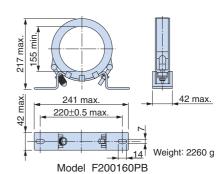
Diagram a



All wires (U/T1, V/T2, W/T3) should pass through the four cores of the reactor in Diagram b



Separate each terminal lead for U/T1, V/T2, and W/T3 in half, passing one half of the wires through a set of four cores and the other half through the other set of four cores as shown. Diagram c


Dimensions (mm)

Model F6045GB

Model F11080GB

200 V Class

	• • •	aoo								
Motor	A10	000			Zer	o Phas	e Reactor			
	Recomr			Input Side)			Output Sid	е	
pacity		(mm²)								
(kW)	Input Side	Output Side	Model	Code No.	Qty.	Diagram	Model	Code No.	Qty.	Diagram
0.4										
0.75	2	2								
1.5			F6045GB	FIL001098	1	a	F6045GB	FIL001098	1	a
2.2			1 004300	1 1200 1030	'	a	1 004300	1 1200 1030	l '	a
3.7	3.5	3.5								
5.5	5.5	3.5								
7.5	8	8	F11080GB	FIL001097	1	а	F11080GB	FIL001097	1	а
11	14	14								
15	22	14								
18.5	30	22	F6045GB	FIL001098			F6045GB	FIL001098		
22	38	30								
30	38	38								
37	60	60			4	b			4	b
45	80	80	F11080GB	FIL001097			F11080GB	FIL001097		
55	100	50×2P	FITOOUGE							
75	80×2P	80×2P								
90	80×2P	80×2P	F200160PB	300-001-041			F200160PB	300-001-041		
110	*	*								

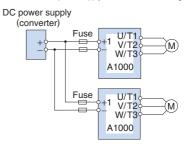
*Model 2A0360: 100 × 2P, model 2A0415: 125 × 2P

П	Motor	A10	000			Zer	o Phas	e Reactor			
	Ca- pacity		mended (mm²)		Input Side)			Output Sid	е	
	(kW)		Output Side	Model	Code No.	Qtv.	Diagram	Model	Code No.	Otv.	Diagram
	0.4		لتستند سنا								
Ш	0.75										
	1.5										
	2.2	2	2	FOOAFOR	EII 004000			FOOAFOR	EII 004000		_
	3.7			F6045GB	FIL001098	1	а	F6045GB	FIL001098	1	а
	5.5										
	7.5	5.5	5.5								
	11	5.5	5.5								
	15		8					F11080GB	FIL001097	1	а
	18.5	14									
	22	'*	14								
	30			F6045GB	FIL001098			F6045GB	FIL001098		
	37	22	22					1004000	112001030		
	45	30	30			4	b				
	55	38	38				~			4	b
	75	60	60								
	90	80	80								
	110	125	125	F11080GB	FIL001097			F11080GB	FIL001097		
	132	150	150								
J	160	200	200								
	185	250	250								
	220		125 × 2P								
	250	125 × 2P	150 X 2P			4	L .			4	b
	315 355	80 × 4P	80 × 4P	E0001CODD	300-001-041	4	b	E0004C0DD	300-001-041	4	D D
	450	10E V 4D	125 × 4P		300-001-041			F200100FB	300-001-041		
	500		150 × 4P								
	560		100 × 4F								
	630		125 × 8P			8	С			8	С
	000	120 A 0F	120 V 0F			<u> </u>	1	1		<u> </u>	

+ + x x x

Fuse and Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs. Refer to the instruction manual for information on UL-approved components.


[Fuji Electric FA Components & Systems Co., Ltd]

Connection Diagram

DC Input Power Supply

(example shows two A1000 drives connected in parallel)

For use with an AC power supply see the connection diagram on page 28.

Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced.

200 V Class

	AC Power	Sup	oply Input		DC Power	Sup	oply Input	
Model CIMR-AA2A	Fuse		Fuse Ho	lder	Fuse		Fuse Hol	der
Olivii t AAZA	Model	Qty.	Model	Qty.	Model	Qty.	Model	Qty.
0004								
0006	CR2LS-30				CR2LS-30			
8000								
0010	CR2LS-50	3	CM-1A	1	CR2LS-50	2	CM-1A	1
0012	CHZLS-50				CHZL3-30			
0018	CR2LS-75				CR2LS-75			
0021	CR2LS-100 CR2L-125				CR2LS-100			
0030	CR2L-125				CR2L-125			
0040	CR2L-150	3	CM-2A	1	CR2L-150	2	CM-2A	1
0056	CR2L-175				CR2L-175			
0069	CR2L-225				CR2L-225			
0081	CR2L-260				CR2L-260			
0110	CR2L-300				CR2L-300			
0138	CR2L-350				CR2L-350			
0169	CR2L-400	3	*		CR2L-400	2	*	
0211	CR2L-450 CR2L-600	3			CR2L-450	_	~	
0250					CR2L-600			
0312					UNZL-000			
0360					CS5F-800			
0415	CS5F-800				CS5F-1200			

^{*} Manufacturer does not recommend a specific fuse holder for this fuse. Contact the manufacturer for information on fuse dimensions.

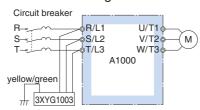
400 V Class

Model	AC Power	Su	pply Input		DC Power	Sup	oply Input	t
Model CIMR-AA4A[[][[][][]]	Fuse		Fuse Ho	lder	Fuse		Fuse Holde	
Olivii i AAAA	Model	Qty.	Model	Qty.	Model	Qty.	Model	Qty.
0002	CR6L-20				CR6L-20			
0004	CR6L-30				CR6L-30			
0005		3	CMS-4	3		2	CMS-4	2
0007	CR6L-50	3	CIVIS-4	3	CR6L-50	-	CIVIS-4	-
0009	CHOL-30				CHOL-30			
0011								
0018	CR6L-75				CR6L-75			
0023	CHOL-75				CHOL-75			
0031	CR6L-100	3	CMS-5	3	CR6L-100	2	CMS-5	2
0038	CR6L-150				CR6L-150			
0044	OHOL 130				OTIOL 130			
0058	CR6L-200				CR6L-200			
0072	CR6L-250				CR6L-250			
0088	O110L 250				O110L 250			
0103	CR6L-300				CR6L-300			
0139	CR6L-350				CR6L-350			
0165	CR6L-400				CR6L-400			
0208								
0250	CS5F-600	3	*		CS5F-600	2	*	
0296								
0362					CS5F-800			
0414	CS5F-800				0001 000			
0515					CS5F-1200			
0675	CS5F-1000				CS5F-1500			
0930	CS5F-1200				CS5F-1200			
1200	CS5F-1500				CS5F-1500			

Capacitor-Type Noise Filter

Capacitor-type noise filter exclusively designed for drive input.

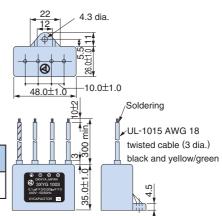
The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes.


Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals.

[Okaya Electric Industries Co., Ltd.]

Model	Code No.
3XYG 1003	C002889

Connection Diagram



Specifications

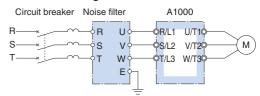
Орсошо	ations	
Rated	Capacitance	Operating
Voltage	(3 devices each)	Temperature (°C)
440 V	X (Δ connection) : 0.1 μ F ± 20 % Y (λ connection) : 0.003 μ F ± 20 %	- 40 to +85

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

Dimensions (mm)

Input Noise Filter

Base device selection on motor capacity.



Noise Filter without Case

Noise Filter with Case

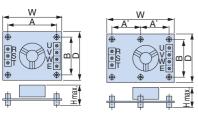
Connection Diagram

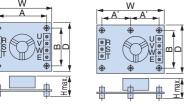
Note: Do not connect the input noise filter to the drive output terminals (U, V, W). Connect in parallel when using two filters.

Noise Filter [Schaffner EMC K.K.]

Note: Refer to the instruction manual for information on the CE mark and compliance with the EMC directive.

200 V Class

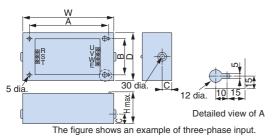

200 V	Olass											
Motor	Noise	Filter without	Case		Nois	se Filter with C	ase		Noise Filte	r by Schaffner	EMC K.	K.
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4 0.75 1.5	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
2.2	LNFD-2153DY	FIL000133	1	15	LNFD-2153HY	FIL000141	1	15	_	-	_	_
3.7	LNFD-2303DY	FIL000135	1	30	LNFD-2303HY	FIL000143	1	30	_	_	_	_
5.5	LNFD-2203DY	FIL000134	2	40	LNFD-2203HY	FIL000142	2	40	FN258L-42-07	FIL001065	1	42
7.5			2	60			2	60	FN258L-55-07	FIL001066	1	55
11			3	90			3	90	FN258L-75-34	FIL001067	1	75
15 18.5	LNFD-2303DY	FIL000135	4	120	LNFD-2303HY	FIL000143	4		FN258L-100-35	FIL001068	1	100
22			4	120			4	120	FN258L-130-35	FIL001069	1	130
30									FN258L-130-35	FIL001069	1	130
37 45									FN258L-180-07	FIL001070	1	180
55	_	_	_	_	_	_	_	_	FN359P-250-99	FIL001071	1	250
75									FN359P-400-99	FIL001073	1	400
90									FN359P-500-99	FIL001074	1	500
110									FN359P-600-99	FIL001075	1	600


Motor	Noise	Filter without	Case		Noi	se Filter with C	ase		Noise Filte	r by Schaffner	EMC K.	K.
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4 0.75	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5				
1.5 2.2	LNFD-4103DY	FIL000145	1	10	LNFD-4103HY	FIL000150	1	10	_	_	_	_
3.7	LNFD-4153DY	FIL000146	1	15	LNFD-4153HY	FIL000151	1	15				
5.5	LNFD-4203DY	FIL000147	1	20	LNFD-4203HY	FIL000152	1	20				
7.5	LNFD-4303DY	FIL000148	1	30	LNFD-4303HY	FIL000153	1	30				
11	LNFD-4203DY	FIL000147	2	40	LNFD-4203HY	FIL000152	2	40	FN258L-42-07	FIL001065	1	42
15 18.5			2	60			2	60	FN258L-55-07	FIL001066	1	55
22 30	LNFD-4303DY	FIL000148	3	90	LNFD-4303HY	FIL000153	3	90	FN258L-75-34	FIL001067	1	75
37									FN258L-100-35	FIL001068	1	100
45			4	120			4	120	FN258L-100-35	FIL001068	1	100
55									FN258L-130-35	FIL001069	1	130
75 90									FN258L-180-07	FIL001070	1	180
110	_	_	_	_	_	_	_	_	FN359P-300-99	FIL001072	1	300
132 160									FN359P-400-99	FIL001073	1	400
185									FN359P-500-99	FIL001074	1	500
220 250									FN359P-600-99	FIL001075	1	600
315 355	_	_	_	_	_	_	_	_	FN359P-900-99	FIL001076	1	900
450 500									FN359P-600-99	FIL001075	2	1200
560 630	_	_	_	_	_	_	_	_	FN359P-900-99	FIL001076	2	1800

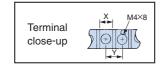
Without Case

Dimensions (mm)

Terminal Model Dimensions (mm) Mounting Weight Code No. Figure (mm) LNFD-Screw (kg) W D Н Α A' Χ 2103DY FIL000132 120 80 55 108 68 20 9 11 M4 × 4.20 mm 0.2 2153DY FIL000133 68 M4 × 4,20 mm 2203DY FIL000134 90 158 78 78 9 11 0.4 70 170 20 2303DY FIL000135 110 79 98 M4 × 6,20 mm 0.5 2 10 13 4053DY FIL000144 2 0.3 4103DY FIL000145 2 170 130 118 30 9 M4 × 6,30 mm 79 11 95 0.4 4153DY FIL000146 FIL000147 0.5 4203DY 2 9 11 200 145 100 133 30 M4 × 4,30 mm 94 4303DY FIL000148 10 0.6


Figure 1

Terminal close-up


Figure 2

With Case

Dimensions (mm)

LNFD-	Code No.		Di	mensio	Tern (m		Weight (kg)			
		W	D	Н	Α	В	С	Χ	Υ	
2103HY	FIL000140	185	95	85	155	65	33	9	11	0.9
2153HY	FIL000141	185	95	85	100	00	33	9	11	0.9
2203HY	FIL000142	0.40	105	100	010	٥.	00	9	11	1.5
2303HY	FIL000143	240	125	100	210	95	33	10	13	1.6
4053HY	FIL000149									1.6
4103HY	FIL000150	235	140	120	205	110	43	9	11	4.7
4153HY	FIL000151									1.7
4203HY	FIL000152	070	155	105	040	105	40	9	11	0.0
4303HY	FIL000153	270	155	125	240	125	43	10	13	2.2

Manufactured by Schaffner EMC K.K.

Dimensions (mm)

Connecting Noise Filters in Parallel to the Input or Output Side (examples shows two filters in parallel)

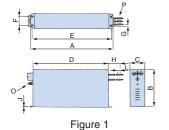
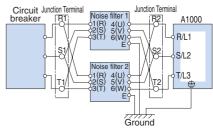



Figure 2

564±1.5

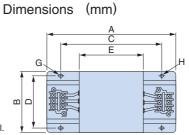
A junction terminal block should be included in the circuit when connecting noise filters in parallel in order to keep the current level balanced. Noise filters and grounding wire should be as heavy and as short as possible.

Figure 3

±0.2 d	ia.		20	· D ·
0±0.5	210±0.5	40±0.	3±0.2 -	64 ±1
	F	igure	4	

Model	Weight (kg)
FN359P-250-99	16
FN359P-300-99	16
FN359P-400-99	18.5
FN359P-500-99	19.5
FN359P-600-99	20.5
FN359P-900-99	33

Model	Figure					Dim	nensions (r	nm)					Wire Gauge	Weight
iviodei	Figure	Α	В	С	D	Е	F	G	Н	J	L	0	Р	(kg)
FN258L-42-07			185±1	70			45		500		12		AWG8	2.8
FN258L-55-07	1	329	100 ± 1	80	300	314	55	6.5	500	1.5	12	M6	AWG6	3.1
FN258L-75-34			220	00			55		_		_		-	4
FN258L-100-35	2	379±1.5	220	90±0.8	350±1.2	364	65			1.5	_			5.5
FN258L-130-35	2	439±1.5	240	110±0.8	400±1.2	414	80	6.5	_	3	_	M10	_	7.5
FN-258L-180-07	3	438±1.5	240	110±0.8	400±1.2	413	00		500	4	15		50 mm ²	11
FN359P-	4		Described in Figure 4								Shown in the			
	4	Described in Figure 4							above table					



Output Noise Filter

Base device selection on motor capacity.

Connection Diagram Output noise filter A1000 Circuit breaker R/L1 U/T1 S/L2 V/T2 T/L3 W/T3 Use the mounting screw as the grounding terminal.

[NEC Tokin Corporation]

200 V Class

Motor Capacity (kW)	Model	Code No.	Qty.*1	Rated Current (A)	A	Dimensions							Terminal	Weight*2 (kg)
0.4				(7.7)						-				(1.9)
0.75	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×φ4.5	φ4.5	TE-K5.5 M4	0.5
1.5											, , ,	7		
2.2														
3.7	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	φ4.5	TE-K5.5 M4	0.6
5.5			1	50										
7.5			'	50										
11	LF-350KA	FIL000070			260	180	180	160	120	65	$7 \times \phi 4.5$	φ4.5	TE-K22 M6	2.0
15			2	100										
18.5														
22	LF-350KA*3	FIL000070	3	150	260	180	180	160	120	65	$7 \times \phi 4.5$	φ4.5	TE-K22 M6	2.0
22	LF-3110KB*3	FIL000076	1	110	540	340	480	300	340	240	9× <i>ϕ</i> 6.5	ϕ 6.5	TE-K60 M8	19.5
30	LF-350KA*3	FIL000070	3	150	260	180	180	160	120	65	$7 \times \phi 4.5$	φ4.5	TE-K22 M6	2.0
30	LF-375KB*3	FIL000075	2	150	540	320	480	300	340	240	$9 \times \phi 6.5$	ϕ 6.5	TE-K22 M6	12.0
37														
45	LF-3110KB	FIL000076	2	220	540	340	480	300	340	240	$9 \times \phi 6.5$	ϕ 6.5	TE-K60 M8	19.5
55														
75			3	330										
90	LF-3110KB	FIL000076	4	440	540	340	480	300	340	240	$9 \times \phi 6.5$	ϕ 6.5	TE-K60 M8	19.5
110			5	550										

^{*1:} Connect in parallel when using more than one filter.

Motor Capacity	Model	Code No.	Qtv.*1	Rated Current					ensions mm)				Terminal	Weight*2
(kW)	IVIOGEI	Code No.	Qty.	(A)	Α	В	С	D (1	E	F	G	Н	Terrima	(kg)
0.4 0.75 1.5 2.2	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×φ4.5	φ4.5	TE-K5.5 M4	0.5
3.7 5.5 7.5	LF-320KB	FIL000072	1	20	140	100	100	90	70	45	7×φ4.5	φ4.5	TE-K5.5 M4	0.6
11 15	LF-335KB	FIL000073		35							,	,		0.8
18.5 22 30	LF-345KB LF-375KB	FIL000074 FIL000075	1	45 75	260 540	180 320	180 480	300	120 340	65 240	$7 \times \phi 4.5$ $9 \times \phi 6.5$	φ4.5 φ6.5	TE-K22 M6 TE-K22 M6	12.0
37 45	LF-3110KB	FIL000076	1	110	540	340	480	300	340	240	9×φ6.5	φ6.5	TE-K60 M8	19.5
55	LF-375KB	FIL000075	2	150	540	320	480	300	340	240	9× <i>ϕ</i> 6.5	φ6.5	TE-K22 M6	12.0
75 90 110			3	220 330										
132 160 185			4	440										
220 250 315	LF-3110KB	FIL000076	5 6 7	550 660 770	540	340	480	300	340	240	9×φ6.5	φ6.5	TE-K60 M8	19.5
355 450 500			8 9 10	880 990 1100										
560 630			11 12	1210 1320										

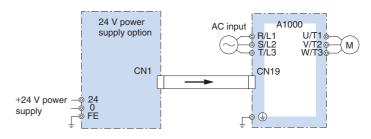
^{*1:} Connect in parallel when using more than one filter. *2: Weight of one filter.

^{*2:} Weight of one filter.

^{*3:} Either noise filter model can be used.

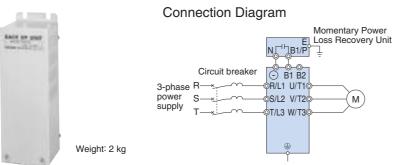
24 V Power Supply

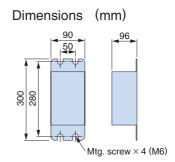
The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only.


Note: Even if a back-up power supply is used for the control circuit, the main circuit must still have power in order to change parameter settings.

Connection Diagram

The installed option adds 50 mm to the total depth of the drive. Installed internally for models 185 kW (CIMR-AA4A0414) and above.





Weight: 0.2 kg

Model	Code No.
200 V Class: PS-A10L	PS-A10L
400 V Class: PS-A10H	PS-A10H

Momentary Power Loss Recovery Unit

Model	Code No.
200 V Class: P0010	P0010
400 V Class: P0020	P0020

Note: Functions as a back-up power supply for drives up to 11 kW. Allows the drive to ride through a power loss up to 2 s long. The drive alone can continue running through a power loss lasting 0.1 s to 1.0 s. Results may vary with drive capacity.

Braking Unit, Braking Resistor, Braking Resistor Unit

Braking units come standard with 200 V and 400 V class drives 0.4 to 30 kW. If the application requires a braking resistor or braking unit, choose from built-in and stand-alone types in accordance with motor capacity.

Braking Unit [CDBR series]

Braking Resistor [ERF-150WJ series]

Braking Resistor with Fuse 【CF120-B579 series】

Braking Resistor Unit 【LKEB series】

200 V	Oia					Braking	ı Re	sistor (ſ	Outv Fac	ctor: 3% El	D. 10 s m	ax.)	*1							
Max.		A1000	Braking	Unit		No F		, r a	With Fuse				Braking Resistor Unit (Duty Factor: 10% ED, 10 s max.)*1				Min.*2			
Applicable Motor (kW)	ND/HD	Model CIMR-AA2A	Model CDBR-	Qty.	E E E E E	Resistance (Ω)		Diagram	Braking Torque*3 (%)	Model CF120-B579	Resistance (Ω)		Diagram	(%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Ů	Braking Torque*3 (%)	Connectable Resistance (Ω)
0.4	HD	0004			201	200	1	Α	220	В	200	1	Α	220	20P7	70 W 200 Ω	1	В	220	48
0.75	ND HD	0004 0006			201	200	1	Α	125	В	200	1	Α	125	20P7	70 W 200 Ω	1	В	125	48
1.1	ND	0006			201	200	1	Α	85	В	200	1	A	85	20P7	70 W 200 Ω	1	В	85	48
1.1	HD	8000			101	100	'	^	150	С	100	1	_ ^	150	21P5	260 W 100 Ω	'		150	40
1.5	ND HD	0008 0010			101	100	1	Α	125	С	100	1	А	125	21P5	260 W 100 Ω	1	В	125	48
2.2	ND HD	0010 0012			700	70	1	Α	120	D	70	1	А	120	22P2	260 W 70 Ω	1	В	120	48 16
3	ND HD	0012 0018			620	62	1	Α	100	E	62	1	Α	100	22P2	390 W 40 Ω	1	В	150	16
3.7	ND HD	0018 0021			620	62	1	Α	80	E	62	1	А	80	23P7	390 W 40 Ω	1	В	125	16
5.5	ND HD	0021 0030	Built-	in	620	62 -	2	Α	110	E	62 –	2	Α	110	25P5	520 W 30 Ω	1	В	115	16
7.5	ND HD	0030 0040			-					-				27P5	780 W 20 Ω	1	В	125	16 9.6	
11	ND HD	0040 0056			-					_	-			2011	2400 W 13.6 Ω	1	В	125	9.6	
15	ND HD	0056 0069				_	-				_				2015	3000 W 10 Ω	1	В	125	9.6
18.5	ND HD	0069				-				_					2015	3000 W 10 Ω	1	В	100	9.6
22	ND HD	0081				_	-			-				2015	3000 W 10 Ω	1	В	85 125	9.6 6.4	
30	ND	0110				_	-				_				2022	4800W 6.8 Ω 4800 W 6.8 Ω	1	В	90	6.4
37	HD ND	0138 0138				_	<u> </u>				_				2022	4800 W 6.8 Ω	1	В	70	6.4
45	HD ND	0169 0169	2015B 2015B	2		_	-				_				2015 2015	3000 W 10 Ω 3000 W 10 Ω	2	D D	100 80	9.6 9.6
55	HD ND	0211 0211	2022B 2022B	2		-									2022	4800 W 6.8 Ω 4800 W 6.8 Ω	2	D	120	6.4
	HD ND	0250 0250			_				-											
75 ———	HD ND	0312 0312	2110B	1	-				_			2022	4800 W 6.8 Ω	3	Е	110	1.6			
90	HD ND	0360	2110B	1			-				_				2022	4800 W 6.8 Ω	4	Е	120	1.6
110	ND HD	0360 0415 0415	2110B	1		_				-				2018	4800 W 8 Ω	5	Е	100	1.6	

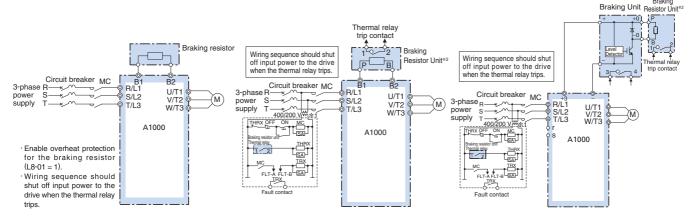
^{*1 :} Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.

^{*2 :} Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.

^{*3 :} Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. Contact Yaskawa for information if braking torque exceeds the value shown.

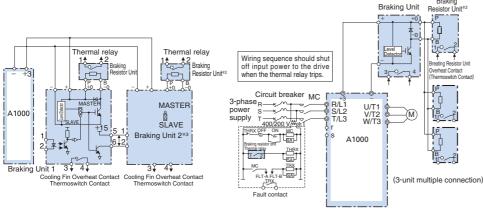
Note: 1. Braking resistor (ERF-150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 51.

^{2.} See the connection diagram on page 50.


400 V Max.		A1000	Braking Unit					Duty Fac	ctor: 3% ED, 10 s max.)*1					Braking Resistor Unit (Duty Factor: 10% ED, 10 s max.)*1					Min.*2
Applicable	ND/HD	Model		Model	No Fuse					With Fuse									
Motor	טח/טוו	CIMR-AA4A	Model CDBR- Qty.	Model ERF-150WJ	Resistance	Ωtv	Diagram	Braking Torque*3	Model CF120-B579	Resistance	Otv	Diagram	Braking Torque	LKEB-	Specifications	Otv	Diagram	Braking Torque*3	Resistance
(kW)			ii		(Ω)	Qiy.	Diagram	(%)	[]	(Ω)	Gty.	Diagram	(%)		(per unit)	Giy.	Diagram	(%)	(Ω)
0.4	HD	0002		751	750	1	Α	230	F	750	1	Α	230	40P7	70 W 750 Ω	1	В	230	96
0.75	ND	0002		751	750	4	_	100	_	750	4	۸	100	4007	70.14/ 750.0	4	В	100	00
0.75	HD	0004		751	750	1	А	130	F	750	1	Α	130	40P7	70 W 750 Ω	1	В	130	96
1.5	ND HD	0004 0005		401	400	1	А	125	G	400	1	Α	125	41P5	260 W 400 Ω	1	В	125	96 64
2.2	ND HD	0005 0007		301	300	1	Α	115	Н	300	1	Α	115	42P2	260 W 250 Ω	1	В	135	64
3	ND	0007		201	200	1	A	125	J	250	1	Α	100	42P2	260 W 250 Ω	1	В	100	64
	HD	0009				_	- ' '				·	,,		43P7	390 W 150 Ω	ļ.		150	32
3.7	ND HD	0009 0011		201	200	1	Α	105	J	250	1	Α	83	43P7	390W 150 Ω	1	В	135	32
	ND	0011		201	200	2	Α	135	J	250	2	A	105						
5.5	HD	0018			_	_				_		, ,		45P5	520 W 100 Ω	1	В	135	32
7.5	ND	0018	Built-in											4705	700 144 75 0		_	100	00
7.5	HD	0023												47P5	780 W 75 Ω	1	В	130	32
11	ND	0023			_					_				4011	1040 W 50 Ω	1	В	135	32
	HD	0031														-	_		20
15	ND HD	0031 0038			_					_				4015	1560 W 40 Ω	1	В	125	20
	ND	0038															20		
18.5	HD	0044		-				_				4018	4800 W 32 Ω	1	В	125	19.2		
22	ND	0044							_				4000	4000 W 07 0 O	4	В	125	10.0	
22	HD	0058		_								4022	4800 W 27.2 Ω	1	В	125	19.2		
30	ND	0058		_				_				4030	6000 W 20 Ω	1	В	125	19.2		
	HD	0072																	
37	ND HD	0072 0088	4045B 1	_				-				4030 4037	6000 W 20 Ω	1	В	100 125	19.2		
	ND	0088	4043B I								4037	9600 W 16 Ω		C	125	12.8			
45	HD	0103	4045B 1		_	-			-			4045	9600 W 13.6 Ω	1	С	125	12.8		
	ND	0103	4045B 1							_				4045	9600 W 13.6 Ω	1	С	100	12.8
55	HD	0139	4030B 2		_									4030	6000 W 20 Ω	2	D	135	19.2
75	ND	0139	4030B 2		_					_			4030	6000 W 20 Ω	2	D	100	19.2	
	HD	0165	4045B										4045	9600W 13.6 Ω	_		145	12.8	
90	ND HD	0165 0208	4045B 2		-				-			4045	9600W 13.6 Ω	2	D	120	12.8		
	ND	0208																	
110	HD	0250	4220B 1		_	-				-				4030	6000 W 20 Ω	3	E	100	3.2
100	ND	0250	40000 4										40.45	0000011 10 0 0	4	_	150	0.0	
132	HD	0296	4220B 1											4045	9600W 13.6 Ω	4	Е	150	3.2
160	ND	0296	4220B 1	_								4045	9600W 13.6 Ω	4	Е	140	3.2		
. 30	HD	0362	0					-					10.0 32	Ľ	_	. 10	J.L		
185	ND	0362	4220B 1	_				_				4045	9600W 13.6 Ω	4	Е	120	3.2		
	HD ND	0414 0414																	
220	HD	0515	4220B 1	_			_			4037	9600 W 16 Ω	5	E	110	3.2				
250	ND	0515	4220B 1	_			-				4037	9600 W 16 Ω	5	Е	90	3.2			
315	HD	0675	4220B 2	_			_				4045	9600 W 13.6 Ω	6	F	110	3.2			
355	ND	0675	4220B 2		-				-				4045	9600 W 13.6 Ω		F	120	3.2	
450	HD	0930	4220B 2			_								4037	9600 W 16 Ω		F	100	3.2
500	ND	0930	4220B 2							-				4037	9600 W 16 Ω	_	F	90	3.2
560 630	HD	1200	4220B 3											4037	9600 W 16 Ω		F	120	3.2
000	ND 1200 4220B 3 - 4037 9600 W 16 Ω 15 F 100 3									0.2									

^{*1 :} Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.

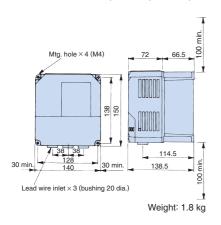
^{*2 :} Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.
*3 : Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. Contact Yaskawa for information if braking torque exceeds the value shown.
Note: 1. Braking resistor (ERF-150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 51.
2. See the connection diagram on page 50.

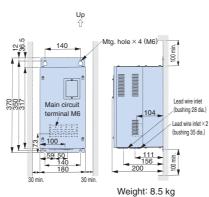

Connection Diagram

Connection Diagram A

Connection Diagram B

Connection Diagram C


Connection Diagram D


Connection Diagram E

- *1: 200 V class drives do not require a control circuit transformer.
- *2: Disable Stall Prevention during deceleration by setting L3-04 to 0 or 3 when using a Braking Resistor Unit.
 - The motor may not stop within the deceleration time if this setting is not changed.
- *3: When using more than one braking unit connected in parallel, set one of the braking units to be the master, and the others to be slaves.
- Note: When connecting a separately-installed type braking resistor unit (model CDBR) to drives with a built-in braking transistor (200 V/400 V 30 kW or less), connect the B1 terminal of the drive to the positive terminal of the braking resistor unit and connect the negative terminal of the drive to the negative terminal of the braking resistor unit. The B2 terminal is not used in this case.

Dimensions (mm) Braking Unit

Model: CDBR-2015B, -2022B, -4030B, -4045B

Model: CDBR-2110B

ire inlet 20,000 g 28 dia.)

Mig. hole × 4 (M6)

Mig. hole × 4 (M6)

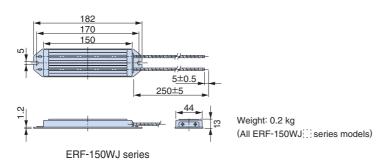
Main Circuit
Terminal M6

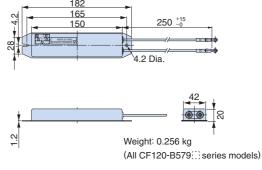
Lead wire inlet × (bushing 35 da.)

104

Lead wire inlet × (bushing 35 da.)

Weight: 12 kg


Model: CDBR-4220B


Model	Heat Loss
CDBR-[[]]	(W)
2015B	32
2022B	38
2110B	64
4030B	54
4045B	59
4220B	71

Braking Resistor

A separate attachment is need. Contact Yaskawa for details. The following attachment can be used to install to the drive.

CF120-B579 series

Braking Resistor Unit (stand-alone)

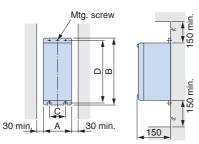
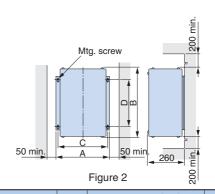



Figure 1

Applicable	Braking Resistor			Dime	m)	NA/ - i - l- 4	Allowable Average		
Voltage Class	Unit Model	Figure	Α	В	С	D	MTG Screw	Weight (kg)	Power Consumption (W)
	20P7	1	105	275	50	260	M5×3	3.0	30
	21P5				75	335		4.5	60
	22P2	1	130	350			M5×4	4.5	89
	23P7							5.0	150
200 V	25P5	1	050	350	200	335		7.5	220
Class	27P5	'	250					8.5	300
	2011		266		246			10	440
	2015	2	356	543	336	240	M8×4	15	600
	2018		446	543	400	340	IVI8×4	19	740
	2022		446		426			19	880

Applicable	Braking Resistor			Dime	ensio	Mojaht	Allowable Average		
Voltage Class	Unit Model	Figure	А	В	С	D	MTG Screw	Weight (kg)	Power Consumption (VV)
	40P7	1	105	275	50	260	M5×3	3.0	30
	41P5							4.5	60
	42P2	1	130	350	75	335	M5×4	4.5	89
	43P7							5.0	150
	45P5	1	250	350	200	335	M6×4	7.5	220
400.17	47P5	'						8.5	300
400 V Class	4011	2	350	412	330	325	M6×4	16	440
Olass	4015		350	412	330	325	IVIO A	18	600
	4018	2	446	543	426	340	M8×4	19	740
	4022		440	543	420	340	IVIO ^ 4	19	880
	4030		356		336			25	1200
	4037	2	446	956	400	740	M8×4	33	1500
	4045		440		426			33	1800

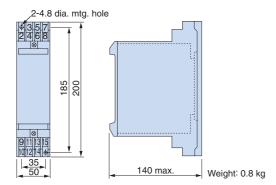
Attachment for Braking Resistor

Attachment inc of the drive.	reases the depth

Model	Code No.
EZZ020805A	100-048-123

VS System Module (Power Supply Capacity 6 VA or less)

Name (Model)	Exterior	Function
Soft Starter A (JGSM-01) Soft Starter B (JGSM-02)		Provides smooth changes in speed during start, stop, and when sudden changes in the speed reference would otherwise impact the load. Independent accel/decel settings, an output signal during speed changes, and fast stopping features are included. Capable of detecting zero speed and motor direction. Acceleration and deceleration time setting ranges: Soft Starter A: 1.5 to 30 s Soft Starter B: 5 to 90 s
Ratio Setter A (JGSM-03)		Converts the current signal 4 to 20 mA of master setter JVOP-03*1 to a voltage signal. Sets five types of ratios and biases.
Ratio Setter B (JGSM-04)		Converts the frequency signal 0 to 2 kHz of master setter JVOP-04*1 to a voltage signal. Sets five types of ratios and biases.
Ratio Setter C (JGSM-17)		Converts a 200 Vac signal, a 30 Vac tachgenerator signal, or a 10 Vdc signal to DC for use as the speed reference. Allows the user to set up to five ratios and biases.
Follower Ratio Setter (JGSM-05)		Converts a frequency signal from a tachgenerator for voltage input. Allows the user to set up to five ratios and biases.
Position Controller (JGSM-06)		Converts a self-synchronizing signal from YVGC-500W*1, then converts that signal to DC voltage proportional to the rotational angle. Equipped with a signal mixing function to minimize deviation from the reference signal.
PID Controller (JGSM-07)		Independently sets ratio gain, integral, and differential time for the simple process control. Integral reset, stepless operation, and wind-up functions are available.
Preamplifier (JGSM-09-□□)*2		Amplifies both the power of DC input signal and output of snap-in function modules JZSP-11 to 16*1.
UP/DOWN Setter (JGSM-10B)		Executes "UP" or "DOWN" command from remote control type VS operator model JVOP-10*1 by lowering or raising reference voltage.
Operational Amplifier (JGSM-12-□□)*3		Required operational circuits are provided through a range of operational impedances.
Signal Selector A (JGSM-13)		Consists of power supply circuit and two relay circuits. Used as a selector circuit of control signals.


Name (Model)	Appearance	Function
Signal Selector B (JGSM-14)		Contains three relay circuits to switch between control signals. Must be using in combination with JGSM-13, which supplies power.
Comparator (JGSM-15-□□)*2		Detects signal levels for DC voltage, current, AC tachogenerator, or frequency reference and compares them with two preset levels. The snap-in module*1 is used to drive relays and output contact signals.
V/I Converter (JGSM-16-□□)*2		Converts DC voltage into a 4 to 20 mA current signal for use with other monitoring devices. A snap-in module*1 can also be added to monitor frequency or provide feedback for a tachogenerator.
D/A Converter (JGSM-18) (JGSM-19)		Converts BCD 3-digit or 12-bit binary digital signals to analog signals of -10 to +10 V with high accuracy. Model JGSM-18: For BCD 3-digit input signals Model JGSM-19: For 12-bit binary signals
Static Potentiometer (JGSM-21 D/A Converter) (JGSM-22 Controller)		Static potentiometer can be used in combination with remote setting device JGSM-10B for the following applications: · Maintain reference values despite power loss · Set deceleration times externally · Operate as a soft-starter for an analog signal JGSM-21 and JGSM-22 must be used in combination with one another.

- *1: Offered as a standard Yaskawa product.
- *2: □□ shows model number of VS snap-in function modules. Refer to the VS Snap-in Module list for more information.

*3: ☐ indicates impedance class.

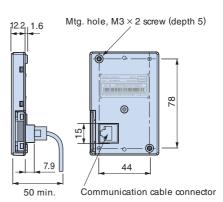
Note: Both 200 V/220 V at 50 Hz/60 Hz are available as standard models. Use a transformer for other power supplies with a capacity of 6 VA or less.

VS System Module Dimensions (mm)

VS Snap-in Module List

Application	Name	Model
Short-circuit of mounting connector of VS snap-in module	Short-circuit PC board	JZSP-00
Buffer accel/decel operation	Soft starter	JZSP-12
Operation with a process controller or VS operator JVOP-03	I/V converter	JZSP-13
Control using digital operator JVOP-04	f/V converter	JZSP-14
Sequence operation with main unit	Tachogenerator follower	JZSP-15
		JZSP-16□□
Amplify or radius signal	Cianal miyer	JZSP-16-01
Amplify or reduce signal	Signal mixer	JZSP-16-02
		JZSP-16-03

LCD Operator


For easier operation when using the optional LCD operator. Includes a copy function for saving drive settings.

Dimensions (mm)

Model	Code No.
JVOP - 180	100-041-022

Operator Extension Cable

Enables remote operation

Model	Code No.
WV001 (1 m)	WV001
WV003 (3 m)	WV003

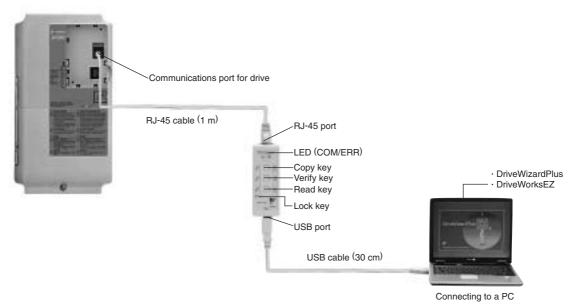
Note: Never use this cable for connecting the drive to a PC. Doing so may damage the PC.

(JVOP-180)

extension cable

Operator Mounting Bracket

This bracket is required to mount the LED or LCD operator outside an enclosure panel.


Item	Model	Code No.	Installation	Notes
Installation Support Set A	EZZ020642A	100-039-992	M4×10 truss head screw M3×6 pan head screw	For use with holes through the panel
Installation Support Set B	EZZ020642B	100-039-993	M4 nut M3×6 pan head screw 13.9 50 min.	For use with panel mounted threaded studs Note: If weld studs are on the back of the panel, use the Installation Support Set B.

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Connection

Note: No USB cable is needed to copy parameters to other drives.

Model	Code No.	
JVOP-181	100-038-281	

Note: JVOP-181 is a set consisting of a USB copy unit, RJ-45 cable, and USB cable.

Specifications

epocinioanone		
Item	Specifications	
Port	LAN (RJ-45)	
Port	USB (Ver.2.0 compatible)	
Power Supply Supplied from a PC or the drive		
Operating System	ing System Windows2000/XP	
Memory Memorizes the parameters for one drive.		
Dimensions 30 (W) × 80 (H) × 20 (D) mm		
Accessories RJ-45 Cable(1 m), USB Cable(30 cm)		

- Note: 1. Drives must have identical software versions to copy parameters settings.
 2. Requires a USB driver.
 3. Parameter copy function disabled when connected to a PC.

Frequency Meter/Current Meter

Model	Code No.
Scale-75 Hz full-scale: DCF-6A	FM000065
Scale-60/120 Hz full-scale: DCF-6A	FM000085
Scale-5 A full-scale: DCF-6A	DCF-6A-5A
Scale-10 A full-scale: DCF-6A	DCF-6A-10A
Scale-20 A full-scale: DCF-6A	DCF-6A-20A
Scale-30 A full-scale: DCF-6A	DCF-6A-30A
Scale-50 A full-scale: DCF-6A	DCF-6A-50A

Note: DCF-6A specifications are 3 V, 1 mA, and 3 k Ω inner impedance. Because the A1000 multi-function analog monitor output default setting is 0 to 10 V, set frequency meter adjusting potentiometer (20 k Ω) or parameter H4-02 (analog monitor output gain) within the range of 0 to 3 V.

Dimensions (mm) 12.5 30 12 0.5 10 24 24 4-4 dia.

Terminal screw × 2 (M4)

Mtg. bolt × 4 (M3)

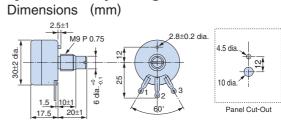
Panel Cut-Out

Weight: 0.3 kg

Variable Resistor Board (installed to drive terminals)

Model	Code No.
Meter scale 20 k Ω	ETX003120

Connection Diagram



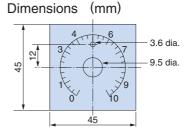
Weight: 20 g

Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.	
RV30YN20S 2 kΩ	RH000739	
RV30YN20S 20 kΩ	RH000850	

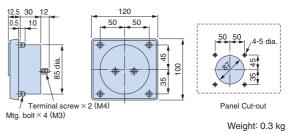
Weight: 0.2 kg

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer Dimensions (mm)


Model	Code No.
CM-3S	HLNZ-0036

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
NPJT41561-1	NPJT41561-1

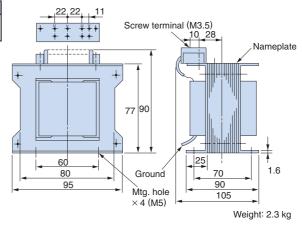


Output Voltage Meter

Model	Code No.	
Scale-300 V full-scale	VM000481	
(Rectification Type Class 2.5: SCF-12NH)	V IVIUUU48 I	
Scale-600 V full-scale		
(Rectification Type Class 2.5: SCF-12NH)	V IVIUUU502	

Dimensions (mm)

Potential Transformer



Model	Code No.	
600 V Transformer for Instrument	DT000004	
: UPN-15B 400 V/100 V	PT000084	

Note: For use with a standard voltage regulator.

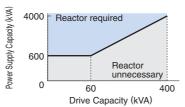
A standard voltage regulator may not match the drive output voltage. Select a regulator specifically designed for the drive output (PT000084), or a voltmeter that does not use a transformer and offers direct read out.

Dimensions (mm)

Application Notes

Application Notes

Selection


■ Installing a Reactor

An AC or DC reactor can be used for the following situations:

- · when the power supply is 600 kVA or more.
- · to smooth peak current that results from switching a phase advance capacitor.
- · to improve the power supply power factor.

A DC reactor comes standard with 200 V and 400 V class models with a capacity of 22 kW or more.

Be sure to use an AC reactor when the drive is using a power supply system with a thyristor converter.

■ Drive Capacity

When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

■ Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

■ Emergency Stop

When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

Options

The B1, B2, +1, and +2 terminals are used to connect optional devices. Connect only A1000-compatible devices.

■ Repetitive Starting/Stopping

Cranes (hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IGBTs is about 8 million start and stop cycles with a 4 kHz carrier frequency and a 150% peak current.

Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.

For cranes and other applications using the inching function in which the drives starts and stops the motor repeatedly, Yaskawa recommends the following steps to ensure torque levels:

- · Select a large enough drive so that peak current levels remain below 150%.
- \cdot The drive should be one frame size larger than the motor.

Installation

■ Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, and oil mist, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

■ Installation Direction

The drive should be installed upright as specified in the manual.

Settings

- Use V/f Control when running multiple induction motors at the same time.
- If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.

■ Upper Limits

Because the drive is capable of running the motor at up to 400 Hz, be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz.

■ DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

+ + x x x

■ Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

Compliance with Harmonic Suppression Guidelines

A1000 conforms to strict guidelines in Japan covering harmonic suppression for power conversion devices. Defined in JEM-TR201 and JEM-TR226 and published by the Japan Electrical Manufacturers' Association, these guidelines define the amount of harmonic current output acceptable for new installation. Refer to JEM-TR226 for more information on Japanese standards for harmonic suppression for power convertors.

General Handling

■ Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

■ Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

■ Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock.

The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

■ Wiring

Make sure to use ring tongue solderless terminals when wiring UL/cUL-certified drives. Use the tools recommended by the terminal manufacturer for caulking.

■ Transporting the Drive

Never steam clean the drive.

During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.

Peripheral Devices

■ Installing an MCCB

Install a leakage current breaker or MCCB to the power supply side of the drive to protect internal circuitry. The type of MCCB needed depends on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.).

Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. Use a leakage breaker with harmonic suppression capability that has been designed specifically for operation with an AC drive. The rated current of the leakage breaker must be 30 mA or higher per drive unit. If a leakage breaker faults out without reducing harmonic current, then reduce the carrier frequency of the drive, replace it with a breaker that has better harmonic suppression capabilities, or provide a leakage breaker with at least a 200 mA current rating to each drive unit.

■ Magnetic Contactor for Input Power

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.

Even though an MC is designed to switch to a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

■ Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass

Application Notes (continued)

only after the drive is stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor.

Use an MC with delayed release if momentary power loss is a concern.

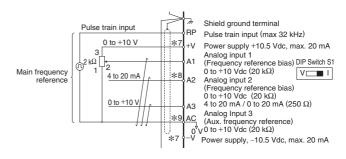
■ Motor Thermal Over Load Relay Installation

Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multipole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter (L1-01 = 0), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate.

■ Improving the Power Factor

Installing a DC or AC reactor to the input side of the drive can help improve the power factor.

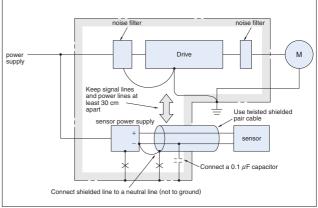
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because harmonic contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.


■ Radio Frequency Interference

Drive output contains harmonic contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

■ Wire Gauges and Wiring Distance

Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used.


The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m, and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

■ Counteracting Noise

Because A1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following points in mind when considering how to reduce motor noise:

- · Lowering the carrier frequency minimizes the effects of noise.
- · A line noise filter can reduce the affects on AM radio frequencies and poor sensor performance. See "Options and Peripheral Devices" on page 24.
- · Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise from the drive power lines.

<Provided by JEMA>

■ Leakage Current

Harmonic leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution
Ground Leakage Current	MCCB is mistakenly triggered	Lower the carrier frequency set to parameter C6-02. Try using a component designed to minimize harmonic distortion for the MCCB such as the NV series by Mitsubishi.
Current Leakage Between Lines	age een to the external terminals is mistakenly triggered by harmonics in the	Lower the carrier frequency set to parameter C6-02. Use the drive's built-in thermal motor protection function.

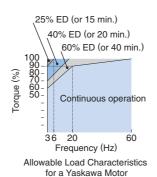
+ + x x x

Setting the Carrier Frequency Relative to Wiring Distance

Wiring Distance	50 m or less	100 m or less	100 m or more
C6-02:	1 to A	1, 2, 7 to A	1, 7 to A
Carrier Frequency Selection	(15 kHz or less)	(5 kHz or less)	(2 kHz or less)

When running multiple motors from a single drive, remember that the motor cable length is determined as the total length of all motor cables combined.

Use V/f Control when motor wiring is longer than 100 m. Because V/f Control is not possible with a PM motor, be sure to keep motor wiring shorter than 100 m when using a PM motor.


Speed Search should be set for Current Detection Speed Search when running multiple motors.

Notes on Motor Operation

Using a Standard Motor

■ Low Speed Range

There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load torque should be re-

duced accordingly at low speeds. The figure above shows the allowable load characteristics for a standard Yaskawa motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds.

■ Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances. Contact Yaskawa for consultation.

■ High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation.

■ Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

■ Vibration and Shock

A1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the fol-

lowing points in mind when using high carrier PWM:

(1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shock-absorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.

(2) Any imperfection on a rotating body increases vibration with speed.

Caution should be taken when operating above the motor rated speed.

■ Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated speed (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
- For applications running a synchronous motor with the drive set for Heavy Duty performance (particularly hoists and conveyor applications), use Closed Loop Vector Control for PM (A1-02 = 7). Contact Yaskawa for details.
- When the power to a drive running a PM motor is shut off, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:
 - · Applications where the machine can still rotate even though the drive has fully stopped should have a load switch installed to the output side of the drive. Yaskawa recommends manual load switches from the AICUT LB Series by Aichi Electric Works Co., Ltd.
 - Do not connect to a load that could potentially rotate the motor faster than the maximum allowable speed even when the drive has been shut off.
 - · Wait at least one minute after opening the load switch on the output side before inspecting the drive or performing any maintenance.
 - Do not open and close the load switch while the motor is running, as this can damage the drive.
 - If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.

Application Notes (continued)

- Synchronous motors cannot be started directly from line power. Applications requiring line power to start should use an induction motor with the drive.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- The amount of starting torque that can be generated differs by the type of motor being used. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.
 - Contact Yaskawa if you plan to use a motor that does not fall within these specifications.
- Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed.
- The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.
- When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Conveyor, transport, and hoist applications using a holding brake should run an IPM motor in Closed Loop Vector Control for PM motors.
- To restart a coasting motor rotating at over 120 Hz, use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor. Contact Yaskawa for details.
 - Speed Search can be used to restart a coasting motor rotating slower than 120 Hz. If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted.
 - * Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor.

Applications with Specialized Motors

■ Multi-Pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regen overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

■ Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

■ Explosion-Proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.

An explosion-proof pulse generators (PG) is used for an explosion-proof with voltage tolerance. Use a specially designed pulse coupler between the drive and the PG when wiring.

■ Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

■ Single-Phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes excessive current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. A1000 is for use only with 3-phase motors.

■ Uras Vibrator

Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:

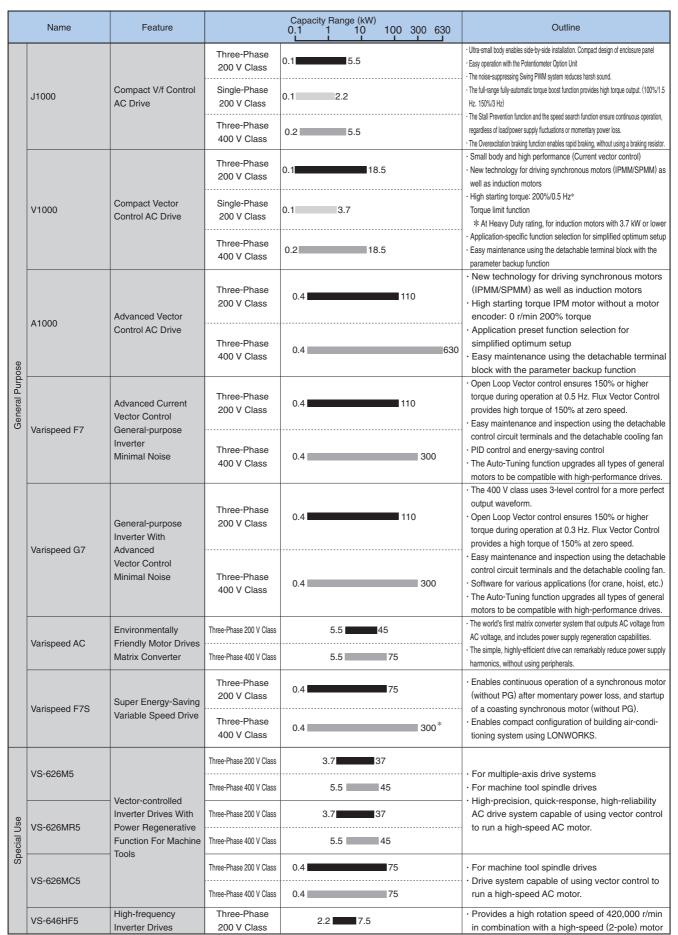
- (1) Uras vibrator should be used within the drive rated frequency
- (2) Use V/f Control

(3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator

Note: Contact Yaskawa for applications that require an acceleration time of less than 5 s.

(4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

■ Motor with Brake


Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.)

Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

YASKAWA AC Drive Series

^{*} Maximum capacity without PG: 160 kW

Global Service Network

Region	Service Area	Service Location	Service Agency	Telephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles New Jersey Boston San Francisco Ohio North Carolina	1)YASKAWA ELECTRIC AMERICA INC.	Headquarters +1-847-887-7303 FAX +1-847-887-7070
	Mexico	Mexico City	PILLAR MEXICANA. S.A. DE C.V.	+52-555-660-5553 FAX +52-555-651-5573
South	South America	São Paulo	€YASKAWA ELÉCTRICO DO BRASIL LTD.A.	+55-11-3585-1100 FAX +55-11-5581-8795
America	Colombia	Bogota	OVARIADORES LTD.A.	+57-1-428-4225 FAX +57-1-428-2173
Europo	Europe, South Africa	Frankfurt	9YASKAWA ELECTRIC EUROPE GmbH	+49-6196-569-300 FAX +49-6196-569-398
Europe			9YASKAWA ENGINEERING EUROPE GmbH	+49-6196-569-520 FAX +49-6196-888-598
	Japan	Tokyo, offices nationwide	YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	+81-3-5402-4502 FAX +81-3-5402-4580
			(After-sales service) (After-sales service)	+81-4-2931-1810 FAX +81-4-2931-1811
	South Korea	Seoul	9YASKAWA ELECTRIC KOREA CORPORATION	+82-2-784-7844 FAX +82-2-784-8495
			OYASKAWA ENGINEERING KOREA Co.	+82-2-3775-0337 FAX +82-2-3775-0338
	China	Beijing, Shanghai, Guangzhou	(1) YASKAWA ELECTRIC (SHANGHAI) Co., Ltd.	+86-21-5385-2200 FAX +86-21-5385-3299
Asia	Taiwan	Taipei	@YASKAWA ELECTRIC TAIWAN Co.	+886-2-2502-5003 FAX +886-2-2505-1280
	Singapore	Singapore	®YASKAWA ELECTRIC (SINGAPORE) Pte. Ltd.	+65-6282-3003 FAX +65-6289-3003
			@YASKAWA ENGINEERING ASIA-PACIFIC Pte. Ltd.	+65-6282-1601 FAX +65-6282-3668
	Thailand	Bangkok	(BYASKAWA ELECTRIC (THAILAND) Co., Ltd.	+66-2-693-2200 FAX +66-2-693-2204
	India	Mumbai	(BLARSEN & TOUBRO LIMITED	Headquarters ↑ +91-22-67226200 +91-22-27782230 FAX +91-22-27783032
Oceania	Australia	Sydney (HQ) Melbourne	 ● ROBOTIC AUTOMATION Pty. Ltd. Headquarters +61-2-9748-3788 FAX +61-2-9748-3817 	

IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama 358-8555, Japan Phone: 81-4-2962-5696 Fax: 81-4-2962-6138

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone: 81-3-5402-4511 Fax: 81-3-5402-4580 http://www.yaskawa.co.jp

YASKAWA ELECTRIC AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: (800) YASKAWA (800-927-5292) or 1-847-887-7000 Fax: 1-847-887-7370 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL COMÉRCIO LTDA.

Avenda Fagundes Filho, 620 Bairro Saude, São Paulo, SP04304-000, Brasil Phone: 55-11-3585-1100 Fax: 55-11-5581-8795 http://www.yaskawa.com.br

YASKAWA ELECTRIC EUROPE GmbH

Hauptstraβe 185, 65760 Eschborn, Germany Phone: 49-6196-569-300 Fax: 49-6196-569-398

YASKAWA ELECTRIC UK LTD.

1 Hunt Hill Orchardton Woods, Cumbernauld, G68 9LF, United Kingdom Phone: 44-1236-735000 Fax: 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION

7F, Doore Bldg. 24, Yeoido-dong, Youngdungpo-Ku, Seoul, 150-877, Korea Phone: 82-2-784-7844 Fax: 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore Phone: 65-6282-3003 Fax: 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.

No.18 Xizang Zhong Road, Room 1702-1707, Harbour Ring Plaza, Shanghai, 200001, China Phone: 86-21-5385-2200 Fax: 86-21-5385-3299

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. BEIJING OFFICE Room 1011A, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: 86-10-8518-4086 Fax: 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan Phone: 886-2-2502-5003 Fax: 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply

Specifications are subject to change without notice

for ongoing product modifications and improvements

© 2008-2009 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP C710616 22E

Published in Japan October 2009 08-7 �-0 09-8-2

Printed on 100% recycled paper SoyINK, with soybean oil ink.