## MONITロUCH

 $V_{\text {series }}$
## Macro Reference

## Record of Revisions

Reference numbers are shown at the bottom left corner on the back cover of each manual.

| Date | Reference No. | Revised Contents |
| :---: | :---: | :---: |
| January, 2008 | 1056NEO | First edition |
| July, 2011 | 1056NE1 | Second edition <br> - Revised for reprint <br> - Front and back covers revised <br> - Supported models added V815X, V810C, V808C, V806 series, V808CH, and TELLUS version 3 <br> - Macro commands added Math \& Trig, IF/ELSE/ENDIF, SMPL_CSV2/SMPL_CSVBAK2, HDCOPY3, CLND_TO_GRE, GRE_TO_CLND, FORMAT_DATA, FORMAT_STR, MOVE_FILE, READ_FILE, WRITE_FILE |
| July, 2012 | 1056NE2 | Third edition <br> - Front cover revised <br> - Macro command added IF/ELSE/ENDIF (BIT) <br> - Revised for reprint |
|  |  |  |

## Preface

Congratulations on purchasing the MONITOUCH V series.
The " $V$ Series Macro Reference" manual describes macro functions used on the drawing/editing software (V-SFT version 5) for the MONITOUCH V series. For a correct use of the product, read this manual thoroughly.

Notes:

1. The copyright of the software is possessed by Hakko Electronics Co., Ltd.
2. Reproduction of the contents of the software and this manual, in whole or in part, without permission of Hakko Electronics Co., Ltd. is prohibited.
3. The specifications of the software and the information in this manual are subject to change without prior notice.
4. If the specifications of the software do not correspond with the contents of this manual, the software specifications have priority.
5. No liability is assumed by Hakko Electronics Co., Ltd. with respect to the influence brought by the result of using the software or this manual.
6. You may use this software on a single central processing unit.

## About Trademarks:

- Windows, Word and Excel are registered trademarks of Microsoft Corporation in the United States and other countries.
- All other company names or product names are trademarks or registered trademarks of their respective holders.
- The names of the products contained herein are trademarks or registered trademarks of their respective manufacturers.


## About Manuals

The following manuals are available for the MONITOUCH V series.
Refer to them as necessary.

| Manual Name | Reference No. | Contents |
| :---: | :---: | :---: |
| V Series Macro Reference (this manual) | 1056NEx | For the V-SFT version 5, an overview of macros as well as a detailed description of the macro editor operations and macro commands are provided. |
| V8 Series Reference Manual | 1055NEx | The functions of the MONITOUCH V8 series are explained in detail. |
| V8 Series Reference: Additional Functions | 1060NEx | The functions that are added from the V-SFT version 5.1.0.0 to the MONITOUCH V8 series are explained in detail. |
| V8 Series Introductory Manual | 1057NEx | For the MONITOUCH V8 series, its overview as well as a detailed description of the configuration software basic operations are provided. |
| V8 Series Operation Manual | 1058NEx | The information related to the operations of the V-SFT version 5, such as software composition, editing procedure or limitations, is explained in detail. |
| V8 Series Hardware Specifications | 2016NEx | Hardware specifications and handling procedures of the MONITOUCH V8 series are explained. |
| V806 Series Hardware Specifications | 2017NEx | Hardware specifications and handling procedures of the MONITOUCH V806 series are explained. |
| V815 Hardware Specifications | 2018NEx | Hardware specifications and handling procedures of the MONITOUCH V815 are explained. |
| V808CH Hardware Specifications | 2019NEx | Hardware specifications and handling procedures of the MONITOUCH V808CH are explained. |
| V8 Series Connection Manual | 2201NEx | Wiring diagrams and procedures for connection between the MONITOUCH V8 series and devices of individual manufacturers are explained. |
| V Series DLL Function Specifications | 1059NEx | DLL files used for Ethernet (HKEtn20.dII) and CF card (VCFAcs.dII) are explained in detail. |
| Reference Manual Version 3 | 1050NEx | Functions of the MONITOUCH V6/V7 series are explained in detail. |
| V7 Series Hardware Specifications | 2010NEx | Hardware specifications and handling procedures of the MONITOUCH V7 series are explained. |
| V706 Series Hardware Specifications | 2012NEx | Hardware specifications and handling procedures of the MONITOUCH V706 series are explained. |
| V715 Hardware Specifications | 2015NEx | Hardware specifications and handling procedures of the MONITOUCH V715 are explained. |
| PLC Connection Manual | 2200NEx | Wiring diagrams and procedures for connection between the MONITOUCH V6/V7 series and devices of individual manufacturers are explained |
| Temperature Control Network | 1033NEx | Connecting procedures and wiring diagrams relevant to the temperature control network for the MONITOUCH V6/V7 series are explained. |

## V Series Models

The following $V$ series models are available:

| Generic Name | Series | Symbol | Model |
| :---: | :---: | :---: | :---: |
| $\checkmark$ series | V8 series | V815X | V815ix |
|  |  | V812S | V812iS, V812S |
|  |  | V810S | V810iS, V810S |
|  |  | V810T | V810iT, V810T |
|  |  | V810C | V810iC, V810C |
|  |  | V808S | V808iS, V808S |
|  |  | V808C | V808iC, V808C |
|  |  | V808CH | V808iCH, V808CH |
|  | V806 series | V806T | V806iT, V806T |
|  |  | V806C | V806iC, V806C |
|  |  | V806M | V806iM, V806M |
|  | V7 series | V715X | V715X |
|  |  | V712S | V712iS, V712S |
|  |  | V710S | V710iS, V710S |
|  |  | V710T | V710iT, V710T |
|  |  | V710C |  |
|  |  | V708S | V708iS, V708S |
|  |  | V708C |  |
|  | V706 series | V706T |  |
|  |  | V706C |  |
|  |  | V706M |  |
|  | V6 series | V612T |  |
|  |  | V612C |  |
|  |  | V610S |  |
|  |  | V610T |  |
|  |  | V610C |  |
|  |  | V608C |  |
|  |  | V606iT |  |
|  |  | V606iC |  |
|  |  | V606iM |  |
|  |  | V606C |  |
|  |  | V606M |  |
|  |  | V606eC |  |
|  |  | V606eM |  |
|  |  | V609E |  |
|  |  | V608CH |  |
|  | V4 series | V4 |  |
|  |  | V4S |  |

(to be continued)

| Generic Name | Series | Symbol | Model |
| :--- | :---: | :---: | :---: |
| TELLUS | TELLUS Ver. 3 | TELLUS3 HMI | $\mathrm{HMI}^{{ }^{*} 1}$ |
|  | TELLUS Ver. 2 | TELLUS2 HMI | $\mathrm{HMI}^{{ }^{1}}$ |

*1 Limitations and notes on macro commands should be noted in the case of the TELLUS remote mode. For more information, consult your local distributor.

Please note that the $V$ series model names are used as listed above in the manuals.

# Notes on Safe Usage of MONITOUCH 

In this manual, you will find various notes categorized under the following levels with the signal words "DANGER," and "CAUTION."

## $\triangle$ DANGER

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

## $\triangle$ CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury and could cause property damage.

Note that there is a possibility that the item listed with $\widehat{\triangle}$ CAUTION may have serious ramifications.

## $\triangle$ danger

- Never use the output signal of MONITOUCH for operations that may threaten human life or damage the system, such as signals used in case of emergency. Please design the system so that it can cope with the malfunctions of a touch switch. A malfunction of a touch switch will result in machine accident or damage.
- Turn off the power supply when you set up the unit, connect new cables or perform maintenance or inspections. Otherwise, electrical shock or damage may occur.
- Never touch any terminals while the power is on. Otherwise, electric shock may occur.
- You must put a cover on the terminals on the unit when you turn the power on and operate the unit. Otherwise, electric shock may occur.
- The liquid crystal in the LCD panel is a hazardous substance. If the LCD panel is damaged, do not ingest the leaked liquid crystal. If the liquid crystal spills on skin or clothing, use soap and wash off thoroughly.
- Never disassemble, recharge, deform by pressure, short-circuit, reverse the polarity of the lithium battery, nor dispose of the lithium battery in fire. Failure to follow these conditions will lead to explosion or ignition.
- Never use a lithium battery that is deformed, leaks, or shows any other signs of abnormality. Failure to follow these conditions will lead to explosion or ignition.
- For the V8 series or V715X, the power lamp flashes when the backlight is at the end of life or is faulty. However, the switches on the screen are operable at this time. Do not touch the screen when the screen becomes dark and the power lamp flashes. Otherwise, a malfunction may occur and result in machine accident or damage.


## §CAUTION

- Check the appearance of the unit when it is unpacked. Do not use the unit if any damage or deformation is found. Failure to do so may lead to fire, damage or malfunction.
- For use in a facility or for a system related to nuclear energy, aerospace, medical, traffic equipment, or mobile installations, please consult your local distributor.
- Operate (or store) MONITOUCH under the conditions indicated in this manual and related manuals. Failure to do so could cause fire, malfunction, physical damage or deterioration.
- Understand the following environmental limits for use and storage of MONITOUCH. Otherwise, fire or damage to the unit may result.
- Avoid locations where there is a possibility that water, corrosive gas, flammable gas, solvents, grinding fluids or cutting oil can come into contact with the unit.
- Avoid high temperature, high humidity, and outside weather conditions, such as wind, rain or direct sunlight.
- Avoid locations where excessive dust, salt, and metallic particles are present.
- Avoid installing the unit in a location where vibration or physical shock may be transmitted.
- Equipment must be correctly mounted so that the main terminal of MONITOUCH will not be touched inadvertently. Otherwise, an accident or electric shock may occur.
- Tighten the fixtures of MONITOUCH with a torque in the specified range. Excessive tightening may distort the panel surface. Loose tightening may cause MONITOUCH to come off, malfunction or be short-circuited.
- Check periodically that terminal screws on the power supply terminal block and fixtures are firmly tightened. Loosened screws may result in fire or malfunction.
- Tighten terminal screws on the power supply terminal block equally to a torque of $0.8 \mathrm{~N} \bullet \mathrm{~m}$ for the V 812 or V810 series, or $1.2 \mathrm{~N} \bullet \mathrm{~m}$ for the V808 series. Improper tightening of screws may result in fire, malfunction, or trouble.
- Tighten mounting screws on the unit equally to a torque of 0.5 to $0.7 \mathrm{~N} \bullet \mathrm{~m}$. Excessive tightening may distort the panel surface. Loose tightening may cause MONITOUCH to come off, malfunction or be short-circuited.
- MONITOUCH has a glass screen. Do not drop or give physical shock to the unit. Otherwise, the screen may be damaged.
- Connect the cables correctly to the terminals of MONITOUCH in accordance with the specified voltage and wattage. Over-voltage, over-wattage, or incorrect cable connection could cause fire, malfunction or damage to the unit.
- Be sure to establish a ground of MONITOUCH. The FG terminal must be used exclusively for the unit with the level of grounding resistance less than $100 \Omega$. Otherwise, electric shock or a fire may occur.
- Prevent any conductive particles from entering into MONITOUCH. Failure to do so may lead to fire, damage, or malfunction.
- After wiring is finished, remove the paper used as a dust cover before starting to operate MONITOUCH. Operation with the cover attached may result in accident, fire, malfunction, or trouble.
- Do not attempt to repair MONITOUCH at your site. Ask Hakko Electronics or the designated contractor for repair.
- Do not repair, disassemble or modify MONITOUCH. We are not responsible for any damages resulting from repair, disassembly or modification of MONITOUCH that was performed by an unauthorized person.
- Do not use a sharp-pointed tool when pressing a touch switch. Doing so may damage the screen. Doing so may damage the screen.
- Only experts are authorized to set up the unit, connect the cables or perform maintenance and inspection.
- Lithium batteries contain combustible material such as lithium or organic solvent. Mishandling may cause heat, explosion or ignition resulting in fire or injury. Read related manuals carefully and handle the lithium battery correctly as instructed.
- When using a MONITOUCH that has analog switch resolution with resistance film, do not press two or more points on the screen at the same time. If two or more positions are pressed at the same time, the switch located between the pressed positions activates.
- Take safety precautions during such operations as setting change during running, forced output, start, and stop. Any misoperation may cause unexpected machine motions, resulting in machine accident or damage.
- In facilities where a failure of MONITOUCH could lead to accident threatening human life or other serious damage, be sure that the facilities are equipped with adequate safeguards.
- At the time of disposal, MONITOUCH must be treated as industrial waste.
- Before touching MONITOUCH, discharge static electricity from your body by touching grounded metal. Excessive static electricity may cause malfunction or trouble.
- The LED lamp on the CF card interface cover provided to the V8 series or V715X lights up in red when the power is supplied to the CF card. Never remove the CF card or turn off the power of MONITOUCH while the LED lamp is lit. Doing so may destroy the data on the CF card. Check that the LED lamp has gone off before removing the CF card or turning off the power of MONITOUCH.


## [General Notes]

- Never bundle control cables nor input/output cables with high-voltage and large-current carrying cables such as power supply cables. Keep these cables at least 200 mm away from the high-voltage and large-current carrying cables. Otherwise, malfunction may occur due to noise.
- When using MONITOUCH in an environment where a source of high-frequency noise is present, it is recommended that the FG shielded cable (communication cable) be grounded at its ends. However, the cable may be grounded only at one end if this is necessary due to unstable communication conditions or for any other reason.
- Plug connectors or sockets of MONITOUCH in the correct orientation. Failure to do so may lead to malfunction.
- If a LAN cable is inserted into the MJ1 or MJ2 connector on the main unit, the counterpart device may be damaged. Check the indication on the unit and insert a cable into the correct position.
- Do not use thinners for cleaning because they may discolor the MONITOUCH surface. Use alcohol or benzine commercially available.
- If a data receive error occurs when MONITOUCH and the counterpart (PLC, temperature controller, etc.) are started at the same time, read the manual for the counterpart unit and reset the error correctly.
- Avoid discharging static electricity on the mounting panel of MONITOUCH. Static charges can damage the unit and cause malfunctions. Otherwise, malfunction may occur due to noise.
- Avoid prolonged display of any fixed pattern. Due to the characteristics of the liquid crystal display, an afterimage may occur. If a prolonged display of a fixed pattern is expected, use the auto OFF function of the backlight.
[Notes on LCD]
Note that the following conditions may occur under normal circumstances.
- The response time, brightness and colors of MONITOUCH may be affected by the ambient temperature.
- Tiny spots (dark or luminescent) may appear on the display due to the liquid crystal characteristics.
- There are variations in brightness and colors on each unit.
- Cold cathode tubes are incorporated into the LCD display for backlights. Optical properties (brightness, irregular colors, etc.) may change in a low-temperature environment or over time of operation.


## Contents

Chapter 1 Outline
1.1 Type of V Series Macros ..... 1-1
1.2 Notes on Macros ..... 1-2
1.3 Initial Macro ..... 1-3
Macro Setting ..... 1-3
[General] tab window ..... 1-3
1.4 Global Macro ..... 1-4
Macro Setting ..... 1-4
[General] tab window ..... 1-4
Macro Execution Steps ..... 1-4
Supplemental Remarks ..... 1-4
1.5 Event Timer Macro ..... 1-5
Macro Setting ..... 1-5
[Event Timer Macro] tab window ..... 1-5
Supplemental Remarks ..... 1-5
1.6 Interval Timer ..... 1-6
Dialog Setting ..... 1-7
[Main] tab window ..... 1-7
[Detail] tab window ..... 1-9
Setting Example ..... 1-10
1.7 Macro Mode ..... 1-12
Setting ..... 1-12
[Main] tab window ..... 1-12
[Detail] tab window ..... 1-13
Chapter 2 Edit
2.1 Macro Editor ..... 2-1
Start ..... 2-1
Screen ..... 2-1
Overlap library ..... 2-1
Switch ..... 2-1
Function switch. ..... 2-2
Macro block ..... 2-2
Macro mode ..... 2-2
Quit ..... 2-3
Screen Composition ..... 2-4
Menus ..... 2-4
[File] menu ..... 2-4
[Edit]/right-click menu ..... 2-5
[View] menu ..... 2-6
Toolbar ..... 2-7
Edit ..... 2-7
Comment List ..... 2-7
Macro Editing Support ..... 2-7
Edit ..... 2-8
1: Command entry ..... 2-8
2: Direct entry ..... 2-10
3: Macro editing support ..... 2-12
4: Text entry ..... 2-14
Error ..... 2-16
Memory Types ..... 2-17
Indirect Memory Designation ..... 2-18
Internal memory, PLC (1-8) memory ..... 2-18
Memory card ..... 2-19
Example ..... 2-19
2.2 Attribute ..... 2-20
Applicable Macros ..... 2-20
Start ..... 2-20
Attribute Setting for Recipe ..... 2-20
Attribute Setting for Sampling ..... 2-22
Recipe ..... 2-23
[Attribute Setting] dialog ..... 2-23
Group folder creation ..... 2-26
Default setting ..... 2-28
CSV file name and storage target ..... 2-29
Total number of CSV files ..... 2-30
Data in CSV file ..... 2-30
Sampling ..... 2-31
CSV output (attribute) setting ..... 2-31
CSV file name and storage target ..... 2-32
Chapter 3 Command
3.1 Macro Command List ..... 3-1
Chapter 4 Details of Macro Commands
4.1 Guide to Chapter 4 ..... 4-1
4.2 Arithmetical Operation ..... 4-2
ADD(+) ..... 4-2
SUB(-) ..... 4-4
MUL(X) ..... 4-6
DIV(1) ..... 4-8
MOD(\%) ..... 4-9
4.3 Logical Operation ..... 4-10
AND(\&) ..... 4-10
OR(I) ..... 4-11
XOR(^) ..... 4-12
SHL(<<) ..... 4-13
SHR(>>) ..... 4-14
4.4 Statistic ..... 4-15
MAX ..... 4-15
MIN ..... 4-16
AVG ..... 4-17
SUM ..... 4-18
4.5 Mathematics/trigonometric ..... 4-19
EXP ..... 4-19
EXPT ..... 4-20
LN ..... 4-21
LOG ..... 4-22
SQRT ..... 4-23
ABS ..... 4-24
NEG ..... 4-25
SIN ..... 4-26
COS ..... 4-27
TAN ..... 4-28
ASIN ..... 4-29
ACOS ..... 4-30
ATAN ..... 4-31
DEG ..... 4-32
RAD ..... 4-33
4.6 Bit Operation ..... 4-34
BSET ..... 4-34
BCLR ..... 4-35
BINV ..... 4-36
4.7 Conversion ..... 4-37
BCD ..... 4-37
BIN ..... 4-38
CWD ..... 4-39
CVP ..... 4-40
CVPFMT ..... 4-41
CVB ..... 4-42
CVBFMT ..... 4-43
SWAP ..... 4-44
CHR ..... 4-45
STRING ..... 4-46
CVFD ..... 4-47
CVDF ..... 4-49
CLND_TO_GRE ..... 4-51
GRE_TO_CLND ..... 4-53
FORMAT_DATA ..... 4-55
FORMAT_STR ..... 4-59
4.8 Transfer ..... 4-63
MOV ..... 4-63
BMOV ..... 4-64
CVMOV ..... 4-66
CVSMOV ..... 4-69
FILL ..... 4-71
4.9 Comparison ..... 4-72
CMP ..... 4-72
TST ..... 4-74
IF
ELSE
ENDIF ..... 4-75
4.10 Macro Operation Control ..... 4-77
CALL ..... 4-77
JMP ..... 4-79
LABEL ..... 4-80
FOR/NEXT ..... 4-81
RET ..... 4-83
SWRET ..... 4-84
WAIT ..... 4-85
EN INT ..... 4-86
4.11 FROM Backup ..... 4-87
FROM_WR ..... 4-87
FROM_RD ..... 4-88
4.12 Printer ..... 4-89
MR_OUT ..... 4-89
MR REG ..... 4-90
OUT_PR ..... 4-92
4.13 Video ..... 4-93
Video ..... 4-93
Video2 ..... 4-109
4.14 PLC. ..... 4-148
PLC CLND ..... 4-148
PLC_CTL ..... 4-150
TBL_READ ..... 4-152
TBL_WRITE ..... 4-153
4.15 Temperature Control / PLC2Way ..... 4-154
TEMP_READ ..... 4-154
TEMP_WRITE ..... 4-155
TEMP_CTL ..... 4-156
4.16 Ethernet ..... 4-157
SEND ..... 4-157
EREAD ..... 4-158
EWRITE ..... 4-159
4.17 CF Card (Recipe) ..... 4-160
LD_RECIPE ..... 4-160
LD_RECIPE2 ..... 4-163
LD_RECIPESEL ..... 4-165
LD_RECIPESEL2 ..... 4-168
SV_RECIPE ..... 4-172
SV_RECIPE2 ..... 4-174
SV_RECIPESEL ..... 4-176
SV_RECIPESEL2 ..... 4-179
SET_RECIPEFOLDER ..... 4-182
RD_RECIPE_FILE ..... 4-184
RD_RECIPE_LINE ..... 4-186
RD_RECIPE_COLUMN ..... 4-188
WR_RECIPE_FILE ..... 4-190
WR_RECIPE_LINE ..... 4-192
WR_RECIPE_COLUMN ..... 4-194
GET_RECIPE_FILEINFO ..... 4-196
4.18 CF Card (Sampling) ..... 4-198
SMPL_BAK ..... 4-198
SMPL_CSV ..... 4-201
SMPL_CSV2 ..... 4-205
SMPL_SAVE ..... 4-207
SMPLCSV_BAK ..... 4-209
SMPLCSV_BAK2 ..... 4-213
4.19 CF Card (Others) ..... 4-215
HDCOPY ..... 4-215
HDCOPY2 ..... 4-216
HDCOPY3 ..... 4-217
SET_DRIVE ..... 4-218
COPY_FILE ..... 4-219
MOVE_FILE ..... 4-221
READ_FILE ..... 4-223
WRITE_FILE ..... 4-225
4.20 Real No. Arithmetical Operation ..... 4-227
F_ADD(+) ..... 4-227
F_SUB(-) ..... 4-228
F_MUL(X) ..... 4-229
F_DIV(/) ..... 4-230
4.21 Real No. Statistics. ..... 4-231
F_SUM ..... 4-231
F_AVG ..... 4-232
F_MAX ..... 4-233
F_MIN ..... 4-234
4.22 Others ..... 4-235
;(Comment) ..... 4-235
BRIGHT ..... 4-236
GET_MSGBLK ..... 4-237
PLC_ULR ..... 4-238
RECONNECT ..... 4-240
RECONNECT_EX ..... 4-241
SAMPLE ..... 4-242
SEARCH_FILE ..... 4-245
ADJ_ANGLE ..... 4-246
SAVE_ANGLE ..... 4-247
ADJ_VOLUME ..... 4-248
SAVE_VOLUME ..... 4-249
TREND REFRESH ..... 4-250
SYS ..... 4-251
HMI-FUNC ..... 4-297

## Outline

### 1.1 Type of V Series Macros

1.2 Notes on Macros
1.3 Initial Macro
1.4 Global Macro
1.5 Event Timer Macro
1.6 Interval Timer
1.7 Macro Mode

### 1.1 Type of V Series Macros

Macros, created with V-series-specific commands, are used to process user programs. Macro creation is made simple with easy-to-use commands.
Macros are executable for the following occasions:

- Screen
- OPEN macro: Executes once when the screen is opened.
- CLOSE macro: Executes once when the screen is switched.
- CYCLE macro: Executes repeatedly while the screen is open.
- Multi-overlap
- OPEN macro: Executes once when the multi-overlap is opened.
- CLOSE macro: Executes once when the multi-overlap is closed.
* OPEN and CLOSE macros cannot be used for call-overlaps.
- Switch
- ON macro: Executes once when the switch is pressed.
- OFF macro: Executes once when the switch is released.
- Function switch
- ON macro: Executes once when the function switch is pressed.
- OFF macro: Executes once when the function switch is released.
- Initial Macro

The specified macro block executes once before the V series starts communicating with the PLC. (Refer to page 1-3.)

- Global Macro

The specified macro block is executed once when the macro execution bit in the read area changes from $0 \rightarrow 1$ (leading edge). (Refer to page 1-4.)

- Event Timer Macro

The specified macro block executes at regular intervals, regardless of which screen is currently displayed. (Refer to page 1-5.)

- Interval Timer

While a screen equipped with the interval timer is displayed, the timer starts as preset. Each time the preset time has elapsed, the specified macro block is executed. (Refer to page 1-6.)

- Macro Mode

While a screen equipped with macro mode is displayed, macros are executed according to the status at the specified memory addresses. (Refer to page 1-12.)

- ON macro: Executes when the bit at the specified memory address changes from $0 \rightarrow 1$ (leading edge).
- OFF macro: Executes when the bit at the specified memory address changes from $1 \rightarrow 0$ (falling edge).


### 1.2 Notes on Macros

- A maximum of 1,024 lines (instructions) can be set for one macro.
- The maximum of executable lines in macros is 160,000 .

If the maximum permissible number is exceeded by, for instance the repetition of the same macro with the use of a loop macro, macro execution is forcibly terminated.
With the V8 series, if the maximum number of executions is exceeded "-1 (DEC)" is stored at $\$$ s1059.

- When an external device memory is used with multiple MOV commands, the external memory is accessed each time so the processing speed is slowed down.
Example:
Line No. 0 PLC1 [D00200] = \$u00200 (W)
Line No. 1 PLC1 [D00201] = \$u00201 (W)
Line No. 2 PLC1 [D00202] = \$u00202 (W)
Line No. 3 PLC1 [D00203] = \$u00203 (W)
Line No. 4 PLC1 [D00204] = \$u00204 (W)
In the above example, the V series goes and writes data to D200 as commanded in line No. 0, then goes and writes data to D201 as commanded in line No. 1, and so on. Communications that frequently occur will result in a prolonged processing time.
To shorten the communications time, give a BMOV command as shown below. The contents of the macro using BMOV are the same as the above macro consisting of five lines, but the data writing takes place only once.

Line No. 0 PLC1 [D00200] = \$u00200 C:5 (BMOV) (W)
The processing speed is increased and the number of macro commands is reduced. As described above, macros can be simplified when you plan to make their commands more efficient to use.

### 1.3 Initial Macro

An initial macro is executed once before the V series starts communicating with the external device.

## Macro Setting

[General] tab window


### 1.4 Global Macro

A global macro is executed when the bit is set (ON), regardless of the screen displayed.

## Macro Setting

[General] tab window


Global Macro
Memory

Specify the memory address where the macro block number to be executed is contained.

## Macro Execution Steps

1. The macro block number is specified at the global macro memory address.
2. Bit 8 of the read area " $n+1$ " is set ( $[0 \rightarrow 1]$ leading edge).
$\downarrow$
Execution of the macro
$\downarrow$
3. Bit 8 of the read area " $n+1$ " is set ( $[1 \rightarrow 0]$ leading edge).

## Supplemental Remarks

- You will see the time when bit 8 of the read area " $n+1$ " is reset (OFF) from bit 8 of the write area " $\mathrm{n}+1$ " (global macro execution bit).


### 1.5 Event Timer Macro

An event timer macro is executed at regular intervals, regardless of the screen displayed.

## Macro Setting

[Event Timer Macro] tab window


## Supplemental Remarks

1. When the timers for multiple event timer macros are up at the same time:

Event timer macro blocks are executed in ascending numeric order of [Event Timer No.].
After a macro block has been processed, execution proceeds to the next macro block.

2. When accessing the same external device memory address in some event timer macros: The processing ability will be improved if you set the event timer macro No. 0 that reads the external device memory into the internal memory and make other event timer macros refer to this internal memory.
In order to improve the overall processing ability, reduce the number of times that the external device memory is accessed.

### 1.6 Interval Timer

The interval timer has the following functions:

- The specified macro block is executed at arbitrary-set time intervals from the instant the screen is opened.

The screen is opened.


- The specified macro block is executed at arbitrary-set time intervals from the instant an arbitrary bit is set (ON). (This function is valid only while the bit is set.)

- The specified macro block is executed once after an arbitrary length of time has elapsed from the instant the screen is opened or an arbitrary bit is set (ON).

The screen is opened.


## Dialog Setting

[Main] tab window



*1 [Time-out Time] might vary according to the contents of the screen.
[Detail] tab window


| Process Cycle | Specify the cycle for the V series to read the PLC when they are <br> communicating. <br> For more information, refer to the V8 Series Reference Manual. |
| :--- | :--- |
| ID | Specify an ID. <br> For more information, refer to the V8 Series Operation Manual. |

## Setting Example

Graphic movement on the screen
When the switch is pressed, a graphic from the graphic library is displayed. At the same time, the graphic placed on the left of the screen starts to move to the right. Pressing the switch next clears the graphic. Pressing the switch again displays the graphic in the same position where it was displayed last. The graphic starts to move to the right.

(5) Macro block No. 1 = Executed in every cycle Change the $X$ parameter of the graphic.

## Screen Edit

(1) Graphic Relay

Memory: \$u100-00
Start Graphic: GNo. 0 No. 0
No. of Relays: 1
No. of Parameter Words: 1
Type: 1-Graphic
Mode: XOR
Process Cycle: Low Speed
ID: 0
(2) Interval Timer

Time-out time: 0Stop after ExecutionUse Start Memory: \$u100-00Execution Macro: Macro Block No. 1ON Macro: Macro Block No.OFF Macro: Macro Block No.
Process Cycle: Low Speed
ID: 1
(3) Switch

Output Memory: \$u100-00
Output Action: Alternate
Lamp Memory: \$u100-00
(4) Graphic Library Edit

Example: GNo. 0 \& No. 0
Place the following graphic on the screen, and specify the $X$ parameter.

(5) Macro Block Edit

Example: Macro block No. 1
$0 \quad \$ \mathrm{u} 00101=\$ \mathrm{u} 00101+1(\mathrm{~W})$
1 IF (\$u00101 = 640) LB00 (W)
2 RET
3 LBOO:
$4 \quad \$ u 00101=0(W)$
Macro block to change the $X$ parameter of the graphic start point
While the count on the $X$ axis is increasing up to $640(0 \rightarrow 1 \rightarrow \cdots \rightarrow 640 \rightarrow 0 \rightarrow 1 \rightarrow$ $\cdots \rightarrow 640$ ), the graphic moves from the left to the right.

Transfer the above screen data to the V series for checking.

### 1.7 Macro Mode

Macro mode can be set for screens and multi-overlaps.
Macro mode is used to execute an ON macro when the corresponding bit changes from $0 \rightarrow 1$ (leading edge) and an OFF macro when the corresponding bit changes from $1 \rightarrow 0$ (falling edge).
However, when the screen (multi-overlap) is opened, macro mode executes macros in the level state. (Refer to [Execute OFF Macro at Start].)
A maximum of 32 ON/OFF macros each can be set using the consecutive bits.

## Setting

[Main] tab window


| Memory | Specify the memory address that triggers the macro. |
| :---: | :---: |
| No. of Relays | 1-32 <br> Specify the number of bits for triggering macros. <br> The number specified here is common to both the ON macro and OFF macro. <br> Example: "10" specified for [No. of Relays] <br> - ON macro: 10 maximum <br> - OFF macro: 10 maximum <br> In this case, 10 bits must be allocated for [Memory]. |
| $\square$ Execute OFF Macro at Start | Set the operation to be performed when a screen or multi-overlap that contains macro mode is open. <br> - Checked <br> While the bit of [Memory] is set (ON), the ON macro is executed; while it is reset (OFF), the OFF macro is executed. <br> - Unchecked <br> The ON macro is executed while the bit of [Memory] is set (ON). While the bit of [Memory] is reset (OFF), nothing is executed. |
| Macro Edit | As many ON/OFF macros as the number for [No. of Relays] can be set. |
| Edit | The macro editor window corresponding to the selected alarm is opened. |


| Delete | The macro for the alarm selected under [Macro Edit] is deleted. |
| :--- | :--- |
| Preview | The macro for the alarm selected under [Macro Edit] is displayed. |

## [Detail] tab window



| Process Cycle | Specify the cycle for the V series to read the PLC when they are <br> communicating. <br> For more information, refer to the V8 Series Reference Manual. |
| :--- | :--- |
| ID | Specify an ID. <br> For more information, refer to the V8 Series Operation Manual. |

MEMO

Please use this page freely.


2.1 Macro Editor
2.2 Attribute

### 2.1 Macro Editor

This section describes the usage of the macro editor.

## Start

## Screen

- OPEN macro
[Screen Setting] $\rightarrow$ [OPEN Macro Edit]
- CLOSE macro
[Screen Setting] $\rightarrow$ [CLOSE Macro Edit]
- CYCLE macro

Screen Setting System Setting Ioo
[Screen Setting] $\rightarrow$ [CYCLE Macro Edit]
困 Screen Setting..
( OPEN Macro Edit
M CLOSE Macro Edit
M CYCLE Macro Edit
Local Function Switch Setting.

## Overlap library

- OPEN macro [Screen Setting] $\rightarrow$ [OPEN Macro Edit]
- CLOSE macro [Screen Setting] $\rightarrow$ [CLOSE Macro Edit]


## Switch

- ON Macro
[Macro] $\rightarrow$ [Macro Edit: ON Macro] $\rightarrow$ [Edit] Or double-click [ON Macro] under [Macro Edit].
- OFF Macro
[Macro] $\rightarrow$ [Macro Edit: OFF Macro] $\rightarrow$ [Edit] Or double-click [OFF Macro] under [Macro Edit].



## Function switch

- ON Macro
[Function Switch Setting] $\rightarrow$ [ON Macro] $\rightarrow$ [Edit]
- OFF Macro
[Function Switch Setting] $\rightarrow$ [OFF Macro] $\rightarrow$ [Edit]



## Macro block

[Registration Item] $\rightarrow$ [Macro Block]
Specify the desired macro block number and click [OK].

## Macro mode



- ON Macro
[Main] $\rightarrow$ [Macro Edit: ON Macro] $\rightarrow$ [Edit] Or double-click [ON Macro].
- OFF Macro
[Main] $\rightarrow$ [Macro Edit: OFF Macro] $\rightarrow$ [Edit] Or double-click [OFF Macro].



## Quit

1. Select [Close] from the [File] menu, or click the close button in the upper right corner of the window.

2. The macro editor is terminated with no error detected. If any error is found, the following message appears:
Clicking [Yes] allows you to quit the macro editor without saving the program you edited. Clicking [ No ] returns you to the macro editor.


## Screen Composition

The macro editor window is configured as follows:


## Menus

[File] menu

[Edit]/right-click menu


## [View] menu

| Edit |  |
| :---: | :---: |
| View Help |  |
| Iool Bar |  |
| Support Dialog |  |
| Jump Ctr $1+$ G <br> Previous Pase Crl + Pagellp <br> Next Page Ctrl + PageDown |  |
|  |  |
| Character Size <br> Display Language <br> Memory Setting Menu |  |
| Tool Bar | Selects whether to show/hide the toolbar. |
| Support Dialog | Selects whether to show/hide the [Macro Editing Support] dialog. For more information on the dialog, refer to page 2-7. |
| Jump | Opens the macro editor window for the number specified in [Macro Block]. |
| Previous Page | Opens the previous page. |
| Next Page | Opens the next page. |
| Skip to Nonregistered Screen | Skips the non-registered screens at the time of screen change. |
| Character Size | Allows you to select the size of characters to be displayed in the macro editor. |
| Display Language | Allows you to select the language to be displayed in the macro editor. |
| Memory Setting Menu (Upside Display, Downside Display, Hide) | Allows you to select the position where the memory setting pulldown menu appears in the macro editor. <br> Example: [Downside Display] selected <br>  <br> RET <br> LB 0 : $\qquad$ Placing the cursor at a <br> Internal memory address brings up this underneath the address. |

## Toolbar

## Edit

Refer to "Menus" (page 2-4).

Comment List

|  |  |
| :--- | :--- |
|  | Comment List |
|  | (Will Jump to Selected Comment) |
| Comment List | Jumps to the selected comment line. |

## Macro Editing Support

To go to this dialog, select [Support Dialog] from the [View] menu.


## Edit

You can utilize the macro editor in several editing manners. Choose a desired one.
1: Command entry
Editing is performed with the command list. This method is useful when you know the names of particular commands. (Refer to page 2-8.)
2: Direct entry
Editing is performed by entering text through the keyboard of your computer. (Refer to page 2-10.)
3: Macro editing support
Editing is performed in the dialog that provides the explanation of individual commands.
This method is best suited to beginners. (Refer to page 2-12.)
4: Text entry
Editing is performed with a text editor (commercially available). Macro programming is enabled even in an environment without the editor. (Refer to page 2-14.)

## 1: Command entry

## - New registration

1. Select a line using the [UP] / [DW] button.
2. Enter a command. The command list appears.

3. Choose the desired command from the list and double-click it.

Alternatively, choose the desired command using the $[\uparrow] /[\downarrow]$ key on the keyboard and press the Enter key.

4. The [Memory Setting] dialog appears. Make necessary settings such as the memory address, data length, etc. in the dialog and click the [Finish] or [ $x$ ] button.

5. The line has been registered. To proceed with the next line registration, go back to step 1.


- Memory change

Memory addresses (corresponding to [F0] / [F1] / [F2] / [F3]) are colored green. Follow the steps below when you wish to change any memory addresses:

- Select the desired memory address in green with the cursor. The memory setting menu is displayed. Change the address as necessary.

- Select the desired memory address in green with the cursor, and type an address change through your computer keyboard.
- Command change

Choose the line you wish to change. Delete the line and register a new line.

## 2: Direct entry

- New registration

1. Select a line using the [UP] / [DW] button.
2. Enter mnemonic codes through the keyboard.

Example: MOV command
PLC1 [D200] = \$u100 (W)

* For designating memory, refer to page 2-17.


3. Press the Enter key to go to the next line. To proceed with the next line registration, go back to step 1.

| 即S Screen No. 0 CYCLE Macro - Macro Editor |  |
| :---: | :---: |
| Eile Edit Yiew Help |  |
| $4 \mathrm{~B} \times \mathrm{B}$ ¢ |  |
| $\checkmark$ |  |
| ```H``` |  |

## - Memory change

Memory addresses (corresponding to [F0] / [F1]/ [F2]/ [F3]) are colored green. Follow the steps below when you wish to change any memory addresses:

- Select the desired memory address in green with the cursor. The memory setting menu is displayed. Change the address as necessary.

- Select the desired memory address in green with the cursor, and type an address change through the keyboard.
- Command change

Choose the line you wish to change. Delete the line and register a new line.

## 3: Macro editing support

- New registration

1. Select a line using the [UP] / [DW] button.
2. Select the desired command from the pull-down menu and the macro list.

3. The setting items required for the selected command are displayed. Enter a memory address, data length, etc.

4. The settings made are displayed under [Preview].

5. If you wish to make a comment, enter it in the comment entry box.
6. To overwrite the selected line, press the [Overwrite] button. To insert a line into the position above the selected line, press the [Insert] button.
7. The line has been registered. To proceed with the next line registration, go back to step 1.

- Memory change

1. Select the line to be modified. The command and the values specified for the line are displayed in the [Macro Editing Support] dialog.

2. Change the memory addresses as desired and click the [Overwrite] button. Clicking the [Insert] button inserts the changed setting into the position above the selected line.

## 4: Text entry

The macro editor is capable of importing and exporting text files. Even if the editor is not installed on your computer, macros can be created with commercially available software.

- Export

1. From the [File] menu, select [Export]. The [Save As] dialog is displayed.

| Save As |  | ? $x$ |  |
| :---: | :---: | :---: | :---: |
| Save in: 5 [3 Desktop | $\checkmark$ * |  |  |
| My Documents <br> My Computer <br> My Network Places |  |  |  |
| File name: |  | Save |  |
| Save as type: Text File [ ${ }^{\text {( } .10 \text { t) }}$ | $\checkmark$ | Cancel |  |

2. Enter a file name and click [Save]. A text file is created under the name.

- Text editing

Editing on Notepad

1. Open the text file on Notepad.

2. Select a line using the [UP] / [DW] button.
3. Enter mnemonic codes through the keyboard.

Example: Addition command
\$u1000 = \$u200 + \$u300 (W)

* For designating memory, refer to page 2-17.


4. Save the file.

- Import

1. Open the edit sheet, to which a text file will be imported.
2. From the [File] menu, select [Import]. The [Open] dialog is displayed.

3. Select the desired file and click [Open]. The text file is imported.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Error

1. If the registered lines of a macro have any errors, error messages are displayed.

2. Double-clicking an error message selects the corresponding line.

3. Correct the error as needed in the message. Once finished, the message disappears.


## Memory Types

The following memory types are available with macros:

| Memory |  |  | Setting Range |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | V8 series | V7/V6 series |  |
| Internal memory | \$u |  | \$u00000-\$u32767 | \$u00000-\$u16383 |  |
|  | \$s |  | \$s0000-\$s2047 | \$s0000-\$s1023 |  |
|  | \$L |  | Varies depending on the setting. *1 |  |  |
|  | \$LD |  | Varies depending on the setting. *1 |  |  |
|  | \$T |  | \$T0000-\$T1023 |  |  |
|  | \$P n : *2 |  | \$Pn:000-\$Pn:511 | - |  |
|  | \$M |  | \$M0000-\$M2047 | - |  |
|  | \$MC |  | \$MC0000-\$MC2047 | - | In bytes |
|  | \$C |  | \$C0000-\$C4095 | - |  |
|  | Indirect memory designation |  | For more information, refer to page 2-18. |  | Only for \$u/\$T/\$M |
| Memory card | [File number: Record number]\#address |  | [0:0] \#0000-[15:4094] \#4095 |  |  |
| PLCn memory | PLCn [xxxx] *2*3 |  | Example: PLC1 [D100] | - | 1:1 communication |
|  | PLCn [Port number $x x x x]$ *2 *3 |  | Example: PLC1 [1:D100] | - | 1:n communication |
| PLC memory | PLC [xxxx] *3 |  | - | Example: PLC [D100] | 1:1 communication |
|  | ${ }_{{ }_{*}}^{\text {PLC }}[\text { Port number: } x x x x]$ |  | - | Example: PLC [1:D100] | 1:n communication |
| PLC2 memory | TEMP [Port number: xxxx] *3 |  | - | Example: TEMP [1:D100] |  |
| Temperature controller memory |  |  | - | Example TEMP [1:0100] |  |
| Constant | DEC | WORD | OU-65535U |  | Add " $U$ " to the extreme right position. |
|  |  | DWORD | OU - 4294967295U |  |  |
|  | DEC- | WORD | -32768-32767 |  |  |
|  |  | DWORD | -2147483648-2147483647 |  |  |
|  | OCT | WORD | 0o-177777o |  | Add "o" to the extreme right position. (lower-case "o") |
|  |  | DWORD | 0o-37777777777o |  |  |
|  | HEX | WORD | 0000H - FFFFFH |  | Add "H" to the extreme right position. |
|  |  | DWORD | 00000000H - FFFFFFFFFH |  |  |
|  | FLOAT | DWORD | $\begin{aligned} & -3.402823 E+38--1.4012 \\ & 0 \\ & 1.401298 E-45-3.402823 \end{aligned}$ | $\begin{aligned} & 3 \mathrm{E}-45 \\ & +38 \end{aligned}$ |  |

*1 The specifiable range differs depending on the setting set on the [SRAM/Clock Setting] dialog.
*2 For " n ", set the number of the connected device (1 to 8).
*3 The entry in square brackets [ $x x x x$ ] differs according to the model. Refer to the list of available memories in the V8 Series Connection Manual.

## Indirect Memory Designation

How to perform indirect designation depends on the types of memory and addresses.

## Internal memory, PLC (1-8) memory

- Addresses 0-65535:

|  | 15 | MSB $\quad 8 \quad 7$ |
| :---: | :---: | :---: |
| $n+0$ | Model | LSB |
| $n+1$ | Memory number (address) |  |
| $n+2$ | Expansion code | Bit designation |
| $n+3$ | 00 | Port number |
|  |  |  |

- Addresses 65536 and above:

| 15 | MSB $8 \quad 7$ | LSB 0 |
| :---: | :---: | :---: |
|  | $n+0$ | Model |
| $n+1$ | Memory number (address) lower-order |  |
| $n+2$ | Memory number (address) higher-order |  |
| $n+3$ | Expansion code | Bit designation |
| $n+4$ | 00 | Port number |
|  |  |  |

- Model, memory type (hexadecimal)

| Memory |  |  | Model | Memory type |
| :---: | :---: | :---: | :---: | :---: |
| Internal memory | \$u |  | 00 | 00 |
|  | \$s |  |  | 01 |
|  | \$L | 0-65535 | 00 | 02 |
|  |  | 65536 - | 80 |  |
|  | \$LD | 0-65535 | 00 | 03 |
|  |  | 65536 - | 80 |  |
|  | \$T |  | 00 | 04 |
|  | \$Pn ${ }^{* 1}$ |  | 00 | 05 |
|  | \$M |  | 00 | 06 |
|  | \$MC |  | 00 | 07 |
|  | \$C |  | 00 | 08 |
| $\begin{aligned} & \text { PLC1 } \\ & \text { memory }^{\star 2} \end{aligned}$ | 0-65535 |  | 01/11*3 | The memory type depends on the memory used. Refer to the V8 Series Connection Manual or the PLC Connection Manual and set the type number of the memory. |
|  | 65536- |  | 81/91*3 |  |
| $\begin{aligned} & \text { PLC2 } \\ & \text { memory }{ }^{\star} \end{aligned}$ | 0-65535 |  | 03/12*3 |  |
|  | 65536 - |  | 83/92*3 |  |
| $\begin{aligned} & \text { PLC3 } \\ & \text { memory } \end{aligned}$ | 0-65535 |  | 13 |  |
|  | 65536 - |  | 93 |  |
| $\begin{aligned} & \text { PLC4 } \\ & \text { memory } \end{aligned}$ | 0-65535 |  | 14 |  |
|  | 65536 - |  | 94 |  |
| PLC5 memory | 0-65535 |  | 15 |  |
|  | 65536 - |  | 95 |  |
| PLC6 memory | 0-65535 |  | 16 |  |
|  | 65536 - |  | 96 |  |
| PLC7 <br> memory | 0-65535 |  | 17 |  |
|  | 65536 - |  | 97 |  |
| $\begin{aligned} & \text { PLC8 } \\ & \text { memory } \end{aligned}$ | 0-65535 |  | 18 |  |
|  | 65536 - |  | 98 |  |

*1 " n " treated as an expansion code
*2 For the V7/V6 series: PLC1 memory = the PLC memory, and PLC2 memory = the temperature controller memory
*3 The memory will work when specified with either model.

- Expansion code

An expansion code should be designated, depending on the type of memory in use.
For more information, refer to the description of indirect memory designation relevant to the target memory type in the V8 Series Connection Manual.

Ex.: Mitsubishi Electric SPU memory
Unit No. 0: 00
Unit No. 1: 01

- Port number

| $1: 1$ or multi-link: | Not used |
| :--- | :--- |
| $1: n$ (multi-drop): | Set the port number of the connected device. |

## Memory card

|  | 15 | MSB | 8 | 7 | LSB | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{n}+0$ |  | 02H |  |  | File No. |  |
| $\mathrm{n}+1$ |  | Word address in the record |  |  |  |  |
| $\mathrm{n}+2$ |  |  | cord | N |  |  |

- File number, word address in the record, record number Refer to the memory card map in the V8 Series Reference Manual.


## Example

- When accessing a word in the PLCn memory, " 0 " is specified for the " $n+2$ " word even in the case of memory that does not use an expansion code.
Ex.: Accessing D165 in a Mitsubishi PLC (PLC1)
(Macro)
$\$ \mathrm{~L} 100=0100 \mathrm{H}(\mathrm{W}) \quad$ Model: 01 (PLC1 memory) Memory type: 00
\$u101 = 0165 (W) Memory No.: 165
\$u102 = $0000(\mathrm{~W}) \quad$ Expansion code: None
\$u200 = *\$u100 (W)
(Result of execution)
Data at D165 is transferred to \$u200.
- When accessing the bit-writable memory, such as the Mitsubishi M Relay, the following setting is necessary.

Memory number $=\mathrm{M}($ address $) / 16$
Ex.: Accessing M20
(Macro)
\$u100 $=0106 \mathrm{H}(\mathrm{W}) \quad$ Model: 01 (PLC1 memory) Memory type: 06
$\$ \mathrm{l} 101=0001 \mathrm{H}(\mathrm{W}) \quad$ Memory No. $=20 \div 16=1 . .4$
\$u102 $=0004 \mathrm{H}(\mathrm{W}) \quad$ Expansion code: None Bit designation: 4
*\$u100 (ON)
(Result of execution)
The bit of M20 is set (ON).

### 2.2 Attribute

Attribute settings are required for handling CSV files. Attribute settings are made to register CSV file data formats. MONITOUCH will read and write to CSV files in accordance with the attribute settings.

## Applicable Macros

| Function | Macro | CSV file name | Refer to: |
| :---: | :---: | :---: | :---: |
| Recipe | LD_RECIPE |  | page 4-160 |
|  | LD_RECIPE2 |  | page 4-163 |
|  | LD_RECIPESEL |  | page 4-165 |
|  | LD_RECIPESEL2 |  | page 4-168 |
|  | SV_RECIPE |  | page 4-172 |
|  | SV_RECIPE2 |  | page 4-174 |
|  | SV_RECIPESEL |  | page 4-176 |
|  | SV_RECIPESEL2 |  | page 4-179 |
|  | RD_RECIPE_FILE | xxxxxxxx.CSV | page 4-184 |
|  | RD_RECIPE_LINE |  | page 4-186 |
|  | RD_RECIPE_COLUMN | 8 one-byte upper-case alphanumeric characters or less (Designation of a name) | page 4-188 |
|  | WR_RECIPE_FILE |  | page 4-190 |
|  | WR_RECIPE_LINE |  | page 4-192 |
|  | WR_RECIPE_COLUMN |  | page 4-194 |
| Sampling | SMPL_CSV | $\begin{aligned} & \hline \text { SMPxxxx.CSV } \\ & 0000-0011 \\ & \text { (Designation of a number) } \end{aligned}$ | page 4-201 |
|  | SMPL_CSV2 | $\frac{\text { xxxxxxxx.CSV }}{\text { LDesignation of }}$ a file name | page 4-205 |
|  | SMPLCSV_BAK | $\begin{aligned} & \text { SMPxx_xx.CSV } \\ & =T \quad 00-99 \\ & 00-11 \\ & \text { (Designation of a number) } \end{aligned}$ | page 4-209 |
|  | SMPLCSV_BAK2 | $\frac{\text { xxxxxxxx.CSV }}{\text { LDesignation of }}$ a file name | page 4-213 |

## Start

## Attribute Setting for Recipe

1. Select [System Setting] $\rightarrow$ [Attribute Setting]. The [Attribute] window is displayed.

| 面 Attribute | - $\square$ |
| :---: | :---: |
| $\square$ Recipe |  |

2. To add a new attribute, right-click on the recipe folder and select [New Attribute].


The [Attribute Setting] dialog is displayed.
For more information on setting items, refer to page 2-31.
3. To check or change an existing attribute, double-click the attribute.


The [Attribute Setting] dialog is displayed.
For more information on setting items, refer to page 2-31.
4. To close the [Attribute] window, click the icon on the top left corner of the window and click [Close] or click the $[\mathrm{X}]$ button at the top right corner.

or


## Attribute Setting for Sampling

Attribute settings for sampling can be made in the [Buffering Area Setting] dialog.

1. Select [System Setting] $\rightarrow$ [Buffering Area Setting]. The [Buffering Area Setting] dialog is displayed.
2. Click the [CSV format] button on the [Discrete memory/CSV format] tab window in the [Buffering Area Setting] dialog.

3. The [CSV Output Setting] dialog appears.


For description of the dialog, refer to page 2-31.

## Recipe

## [Attribute Setting] dialog



| $\square$ Use Title *1 | Set how to treat the first line in the CSV file. <br> - Unchecked The first line in the CSV file is treated as data. CSV file <br> Display on MONITOUCH |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6000 | 15 | 200 | ..1 | \#1 | \#2 | \#3 |
|  | 6100 | 15 | 201 | \#1 | 6000 | 15 | 200 |
|  | 6200 | 20 | 202 | \#2 | 6100 | 15 | 201 |
|  | 6300 | 20 | 203 | \#3 | 6200 | 20 | 202 |
|  |  |  |  | \#4 | 6300 | 20 | 203 |
|  | - Checked <br> The first line in the CSV file is treated as title. <br> CSV file <br> Display on MONITOUCH |  |  |  |  |  |  |
|  | Title1 | Title2 | Title3 | ... | Title1 | Title2 | Title3 |
|  | 6000 | 15 | 200 | \#1 | 6000 | 15 | 200 |
|  | 6100 | 15 | 201 | \#2 | 6100 | 15 | 201 |
|  | 6200 | 20 | 202 | \#3 | 6200 | 20 | 202 |
|  | 6300 | 20 | 203 | \#4 | 6300 | 20 | 203 |



| No. of Columns *2 $(1-4096)$ | This option is enabled when [ $\square$ Reverse Definition of Lines/Columns] is unchecked. <br> Specify the number of columns of data in the CSV file. The column of record names is not counted. |
| :---: | :---: |
| $\begin{aligned} & \text { No. of Lines *2 } \\ & (1-4096) \end{aligned}$ | This option is enabled when [ $\checkmark$ Reverse Definition of Lines/Columns] is checked. <br> Specify the number of lines in the CSV file. |
| No. of Total Words *2 $(1-4096)$ | The total is calculated automatically based on the data format. |
| Data Type | Specify the data format in the CSV file. <br> Type: DEC/DEC-/HEX/OCT/BIN/CHAR/BCD/FLOAT <br> Decimal Point: 0-32 <br> Word Count: 1-Word / 2-Word <br> Characters: 2-255 |
| When RECxxxx.CSV is Used (xxxx: 0000-9999) | This option is enabled when [REC0000.CSV] - [REC9999.CSV] is specified for the CSV file name. Enter the CSV file number corresponding to the attribute setting. The location of CSV files is under the RECIPE folder at CF <br> (access folder)\RECIPE. <br> * This option is disabled when an arbitrary string is given to a CSV file name. |

*1 Use of both title and record name:

CSV file

| - | Title1 | Title2 | Title3 |
| :---: | :---: | :---: | :---: |
| ITEM1 | 6000 | 15 | 200 |
| ITEM2 | 6100 | 15 | 201 |
| ITEM3 | 6200 | 20 | 202 |
| ITEM4 | 6300 | 20 | 203 |

*2 The maximum permissible number of columns/lines is 4,096 . However, as many columns or lines as 4,096 will not be available if [No. of Total Words] reaches 4,096 words.

## Group folder creation

If you wish to give an arbitrary name to a CSV file ${ }^{*}$, create a group folder ${ }^{*}$ and store the CSV file in the folder. All CSV files contained in the group folder use settings with common attributes.

* Up to 8 one-byte upper-case alphanumeric characters are allowed for the name of a group folder or a CSV file.

- Procedure

1. Right-click the desired attribute number. The right-click menu is displayed.

2. Select [New Group]. The [G000000] folder is created.

3. Give a name to the folder. Right-click [G000000]. The right-click menu is displayed.

4. Select [Change Name]. [G000000] is highlighted and the cursor appears there. Enter a desired name.

| T Attribute | - $\square^{\text {x }}$ |
| :---: | :---: |
|  |  |

5. Create folders as necessary by following steps 1 through 4.

## Default setting

There is one attribute icon given a red mark. This attribute setting is referred to as the default setting. The default takes effect in the following cases:

- In the case where there is no corresponding attribute setting for a RECxxxx.csv file:

- In the case where a group folder that was not set in the [Attribute] window has been added via Explorer to the CF card:

Attribute


CF card


| TOTAL- FINAL1.CSV- FINAL2.CSV- FINAL3.CSV- FINAL4.CSVFINAL5.CSV | Handled under |
| :---: | :---: |
|  | attribute No. 1 |
|  | (default) |
|  |  |
|  |  |
|  |  |

- REC0000.CSV
- REC0001.CSV
—REC0002.CSV


## CSV file name and storage target

Depending on the name of a CSV file, its location and file designation vary. Create a file according to your purpose.

| File name | Store target |
| :--- | :--- |
| RECxxxx.CSV <br> $0000-9999$ | Access folder\RECIPE |
| See the following: |  |

CF card


* Group folders are defined in the [Attribute] window. A group folder defined in the window will be created automatically when the CF card is inserted into MONITOUCH.


## Total number of CSV files

There is a limitation on the number of group folders and CSV files that can be handled in the recipe mode.

- The total of group folders and CSV files in the RECIPE folder: 1,024 maximum
- The number of CSV files in a group folder: 1,024 maximum

Any more folders and files than 1,024 are not recognized in the recipe mode.

* When access to CSV files is made by a macro command, this limitation is not imposed The time for accessing increases proportionately with the number of files.



## Data in CSV file

- The number of words to be transferred

A maximum of 4,096 words can be read and written at one time in recipe mode or a macro. If you attempt to transfer data exceeding capacity, 4,096 words are transferred, but extra words will not be transferred.

- Lines and columns

The number of lines/columns to be handled varies, depending on the attribute setting.

|  | $\square$ Reverse Definition of Lines/ <br> Columns | $\checkmark$ Reverse Definition of Lines/ <br> Columns*4 |
| :--- | :--- | :--- |
| Number of Lines | $1-32767$ | $1-4096{ }^{* 3}$ |
| Number of <br> Columns ${ }^{*}$ | $1-4096 * 2$ | $1-4096$ |

*1 Excel is capable of handling a maximum of 256 columns.
*2 The maximum number of words per column: 4,096 words
*3 The maximum number of words per line: 4,096 words
*4 File size: 1 MB or less

- Number of bytes for record 32 bytes maximum per record
* The setting can be made in the [Attribute Setting] dialog.
- Number of bytes for a title name 32 bytes maximum per title


## Sampling

## CSV output (attribute) setting

- [Sampling Method]: [Bit Synchronization], [Constant Sampling], [Device Memory Map] or [Time Order Alarming]


| Calendar Condition | Specify the format of display in the CSV file. <br> The dialog contains the options as shown above. For more information, refer to the V8 Series Reference Manual. |
| :---: | :---: |
| Date Display |  |
| Time Display |  |
| Display Order |  |
| $\square$ Zero Suppress for Year |  |
| $\square$ Zero Suppress for Month-Day |  |
| $\square$ Year 4-digit Display |  |

- [Sampling Method]: [Alarm Tracking]


| $\square$ Display Only Primary Cause |
| :--- |
| $\square$ Display Primary Cause Mark |
| History Display |
| Calendar Condition |
| Date Display |
| Time Display |
| $\square$ Zero Suppress for Year |
| $\square$ Zero Suppress for Month/Date |
| $\square$ Year 4-digit Display |
| Display Order |

Specify the format of display in the CSV file. The dialog contains the options as shown above. For more information, refer to the V8 Series Reference Manual.

- [Sampling Method]: [Alarm Logging]


| Calendar Condition |
| :--- |
| Date Display |
| Time Display |
| Status Display |
| Display in Area |
| Display Order |
| $\square$ Zero Suppress for Year |
| $\square$ Zero Suppress for Month-Day |
| $\square$ Year 4-digit Display |

Specify the format of display in the CSV file. The dialog contains the options as shown above. For more information, refer to the V8 Series Reference Manual.

## CSV file name and storage target

- For "SMPL_CSV":

| File name | Store target |
| :--- | :--- |
| SMPxxxx.CSV <br> $0000-0011: ~ B u f f e r ~ n u m b e r ~$ | Access folder\SAMPLE\ |
| See the following: |  |



- For "SMPLCSV_BAK":


CF card ———DAT0000 - - . . . . . . . . . . Access folder
BITMAP
$\square$ CARDISP
FONT
HDCOPY
JPEG
MEMO


RECIPE
SAMPLE

— SMP00_99.CSV —— 100th backup data for buffering area No. 0SNAPSRAVAV
$\square$ WEBSERV

MEMO

Please use this page freely.


## Command

3.1 Macro Command List

### 3.1 Macro Command List

| Category | Command Name | Mnemonic | Contents | Refer to: |
| :---: | :---: | :---: | :---: | :---: |
| Arithmetical Operation | ADD(+) | $\begin{aligned} & F 0=F 1+F 2(W) \\ & F 0=F 1+F 2(D) \end{aligned}$ | Addition | page 4-2 |
|  | SUB(-) | $\begin{aligned} & F 0=F 1-F 2(W) \\ & F 0=F 1-F 2(D) \end{aligned}$ | Subtraction | page 4-4 |
|  | MUL(X) | $\begin{array}{ll} \hline F 0=F 1 & F 2(W) \\ F 0=F 1 & F 2(D) \end{array}$ | Multiplication | page 4-6 |
|  | DIV(/) | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1 / \mathrm{F} 2(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1 / \mathrm{F} 2(\mathrm{D}) \end{aligned}$ | Division | page 4-8 |
|  | MOD(\%) | $\begin{aligned} & \text { F0 = F1 \% F2 (W) } \\ & \text { F0 = F1 \% F2 (D) } \end{aligned}$ | Remainder of division | page 4-9 |
| Logical Operation | AND(\&) | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1 \& F 2(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1 \& \mathrm{~F} 2(\mathrm{D}) \end{aligned}$ | Logical product | page 4-10 |
|  | OR(l) | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1 \mid \mathrm{F} 2(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1 \mid \mathrm{F} 2(\mathrm{D}) \end{aligned}$ | Logical add | page 4-11 |
|  | XOR(^) | $\begin{aligned} & F 0=F 1^{\wedge} F 2(W) \\ & F 0=F 1 \wedge F 2(D) \end{aligned}$ | Exclusive OR | page 4-12 |
|  | SHL(<<) | $\begin{aligned} & \text { F0 }=\mathrm{F} 1 \ll \mathrm{~F} 2(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1 \ll \mathrm{~F} 2(\mathrm{D}) \end{aligned}$ | Left shift | page 4-13 |
|  | SHR(>>) | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1 \gg \mathrm{~F} 2(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1 \gg \mathrm{~F} 2(\mathrm{D}) \end{aligned}$ | Right shift | page 4-14 |
| Statistic | MAX | $\begin{aligned} & \text { F0 }=\text { MAX (F1 C:F2) (W) } \\ & \text { F0 }=\text { MAX (F1 C:F2) (D) } \end{aligned}$ | Maximum | page 4-15 |
|  | MIN | $\begin{aligned} & \text { F0 }=\operatorname{MIN}(F 1 C: F 2)(W) \\ & F 0=\operatorname{MIN}(F 1 C: F 2)(D) \end{aligned}$ | Minimum | page 4-16 |
|  | AVG | $\begin{aligned} & \text { F0 }=\text { AVG (F1 C:F2) (W) } \\ & \text { F0 }=\text { AVG (F1 C:F2) (D) } \end{aligned}$ | Average | page 4-17 |
|  | SUM | $\begin{aligned} & \text { F0 = SUM (F1 C:F2) (W) } \\ & \text { F0 = SUM (F1 C:F2) (D) } \end{aligned}$ | Sum | page 4-18 |
| Mathematics/ trigonometric | EXP | F0 = EXP (F1) (F) | Exponent | page 4-19 |
|  | EXPT | F0 = EXPT (F1,F2) (F) | Powers | page 4-20 |
|  | LN | F0 $=\mathrm{LN}$ (F1) (F) | Natural logarithms | page 4-21 |
|  | LOG | F0 = LOG (F1) (F) | Common logarithms | page 4-22 |
|  | SQRT | F0 = SQRT (F1) (F) | Square roots | page 4-23 |
|  | ABS | $\begin{aligned} & \mathrm{FO}=\mathrm{ABS}(\mathrm{~F} 1)(\mathrm{W}) \\ & \mathrm{F} 0=\mathrm{ABS}(\mathrm{~F} 1)(\mathrm{D}) \\ & \mathrm{FO}=\mathrm{ABS}(\mathrm{~F} 1)(\mathrm{F}) \end{aligned}$ | Absolute value | page 4-24 |
|  | NEG | $\begin{aligned} & \mathrm{F} 0=\text { NEG }(\mathrm{F} 1)(\mathrm{W}) \\ & \mathrm{F} 0=\text { NEG (F1) (D) } \\ & \mathrm{F} 0=\text { NEG (F1) (F) } \end{aligned}$ | Sign inversion | page 4-25 |
|  | SIN | F0 = SIN (F1) (F) | Sine | page 4-26 |
|  | COS | $\mathrm{F} 0=\operatorname{COS}(\mathrm{F} 1)(\mathrm{F})$ | Cosine | page 4-27 |
|  | TAN | F0 = TAN (F1) (F) | Tangent | page 4-28 |
|  | ASIN | F0 = ASIN (F1) (F) | Arcsine | page 4-29 |
|  | ACOS | $\mathrm{F} 0=\mathrm{ACOS}(\mathrm{F} 1)(\mathrm{F})$ | Arccosine | page 4-30 |
|  | ATAN | F0 = ATAN (F1) (F) | Arctangent | page 4-31 |
|  | DEG | F0 = DEG (F1) (F) | Convert radians $\rightarrow$ degrees | page 4-32 |
|  | RAD | $\mathrm{F} 0=\mathrm{RAD}(\mathrm{F} 1)(\mathrm{F})$ | Convert degrees $\rightarrow$ radians | page 4-33 |


| Category | Command Name | Mnemonic | Contents | Refer to: |
| :---: | :---: | :---: | :---: | :---: |
| Bit Operation | BSET | F0 (ON) | Bit set (ON) | page 4-34 |
|  | BCLR | F0 (OFF) | Bit reset (OFF) | page 4-35 |
|  | BINV | F0 (INV) | Bit inversion | page 4-36 |
| Conversion | BCD | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1 \mathrm{BCD}(\mathrm{~W}) \\ & \mathrm{F0}=\mathrm{F} 1 \mathrm{BCD}(\mathrm{D}) \end{aligned}$ | Conversion to BCD | page 4-37 |
|  | BIN | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1 \mathrm{BIN}(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1 \mathrm{BIN}(\mathrm{D}) \end{aligned}$ | Conversion to BIN | page 4-38 |
|  | CWD | F0 = F1 D <- W | Convert one-word $\rightarrow$ double-word | page 4-39 |
|  | CVP | $\begin{aligned} & \text { F0 }=\text { F1 PLC }<-(W) \\ & \text { F0 }=\text { F1 PLC }<-(D) \end{aligned}$ | Convert DEC $\rightarrow$ PLC1 | page 4-40 |
|  | CVPFMT | $\begin{aligned} & \text { F0 }=\text { F1 (W) PLC F2 <- } \\ & \text { F0 }=\text { F1 (D) PLC F2 }<- \end{aligned}$ | Convert DEC $\rightarrow$ PLCn | page 4-41 |
|  | CVB | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1(\mathrm{~W})<-\mathrm{PLC} \\ & \mathrm{F0}=\mathrm{F} 1(\mathrm{D})<-\mathrm{PLC} \end{aligned}$ | Convert PLC1 $\rightarrow$ DEC | page 4-42 |
|  | CVBFMT | $\begin{aligned} & \text { F0 }=\text { F1 }(W)<- \text { PLC F2 } \\ & \text { F0 }=\text { F1 (D) }<- \text { PLC F2 } \end{aligned}$ | Convert PLCn $\rightarrow$ DEC | page 4-43 |
|  | SWAP | F0 C:F1 | Swap MSB with LSB | page 4-44 |
|  | CHR | F0 = ' ${ }^{\text {c }}$ | Convert text $\rightarrow$ code (PLC1 code fixed) | page 4-45 |
|  | STRING | F0 = ' ' (STRING) | Convert text $\rightarrow$ code | page 4-46 |
|  | CVFD | F0 (D) <- F1 (F) F2 (D) | Convert real number $\rightarrow$ BIN | page 4-47 |
|  | CVDF | F0 (F) <- F1 (D) F2 (D) | Convert BIN $\rightarrow$ real number | Page 4-49 |
|  | CLND_TO_GRE | CLND_TO_GRE F0 F1 F2 | Convert calendar data $\rightarrow$ GMT-based UNIX time | page 4-51 |
|  | GRE_TO_CLND | GRE_TO_CLND F0 F1 F2 | Convert GMT-based UNIX time $\rightarrow$ calendar data | page 4-53 |
|  | FORMAT_DATA | FORMAT_DATA F0 F1 F2 | Convert string $\rightarrow$ numerical data | page 4-55 |
|  | FORMAT_STR | FORMAT_STR F0 F1 F2 | Convert numerical data $\rightarrow$ string | page 4-59 |
| Transfer | MOV | $\begin{aligned} & \mathrm{F} 0=\mathrm{F} 1(\mathrm{~W}) \\ & \mathrm{F} 0=\mathrm{F} 1(\mathrm{D}) \end{aligned}$ | Transfer | page 4-63 |
|  | BMOV | $\begin{aligned} & \text { F0 }=\mathrm{F} 1 \mathrm{C}: \mathrm{F} 2(\mathrm{BMOV})(\mathrm{W}) \\ & \text { F0 }=\mathrm{F} 1 \mathrm{C}: \mathrm{F} 2(\mathrm{BMOV})(\mathrm{D}) \end{aligned}$ | Block transfer | page 4-64 |
|  | CVMOV | $\begin{aligned} & \text { F0 }=\text { F1 C:F2 (CVMOV) (W) } \\ & \text { F0 }=\text { F1 C:F2 (CVMOV) (D) } \end{aligned}$ | (With data conversion) Block transfer | page 4-66 |
|  | CVSMOV | $\begin{aligned} & \text { F0 = F1 C:F2 (CVSMOV) (W) } \\ & \text { F0 }=\text { F1 C:F2 (CVSMOV) (D) } \end{aligned}$ | (With text conversion) Block transfer | page 4-69 |
|  | FILL | F0 = F1 C:F2 (FILL) | Transfer all | page 4-71 |
| Comparison | CMP | $\begin{aligned} & \text { IF (F0 = F1)F2 (W) } \\ & \text { IF (F0 = F1)F2 (D) } \end{aligned}$ | Comparison | page 4-72 |
|  | TST | $\begin{aligned} & \text { IFZ (F0 \& F1) F2 (W) } \\ & \text { IFZ (F0 \& F1) F2 (D) } \end{aligned}$ | Logical product comparison | page 4-74 |
|  | IF <br> ELSE <br> ENDIF | $\begin{aligned} & \text { IF (F0 (condition) F1) (W) } \\ & \text { IF (F0 (condition) F1) (D) } \\ & \text { IF ( (condition) F0) (B) } \\ & \text { ELSE } \\ & \text { ENDIF } \end{aligned}$ | Conditional branch | page 4-75 |


| Category | Command Name | Mnemonic | Contents | Refer to: |
| :---: | :---: | :---: | :---: | :---: |
| Macro Operation Control | CALL | CALL FO | Macro block call | page 4-77 |
|  | JMP | JMP F0 | Jump | page 4-79 |
|  | LABEL | LB FO: | Label | page 4-80 |
|  | FOR/NEXT | FOR FO / NEXT | Loop between FOR and NEXT | page 4-81 |
|  | RET | RET | Finish macro processing | page 4-83 |
|  | SWRET | SWRET | Execute switch function | page 4-84 |
|  | WAIT | WAIT | For V4 series | page 4-85 |
|  | EN_INT | EN_INT | Interruption enabled | page 4-86 |
| FROM Backup | FROM_WR | FROM_WR F0 F1 | Write to FROM | page 4-87 |
|  | FROM_RD | FROM_RD F0 F1 | Read from FROM | page 4-88 |
| Printer | MR_OUT | MR_OUT F0 | MR400 call processing | page 4-89 |
|  | MR_REG | MR_REG F0 | MR400 registration processing | page 4-90 |
|  | OUT_PR | OUT_PR F0 F1 | Execute printer command | page 4-92 |
| Video | Video | Video MEMORY F1 | Memory designation | page 4-93 |
|  |  | Video SIZE F1 | Size | page 4-101 |
|  |  | Video SIZE F1 F2 | Size (dot) | page 4-102 |
|  |  | Video SEL_CH F1 | Channel | page 4-103 |
|  |  | Video DITHER F1 | Dithering | page 4-104 |
|  |  | Video BRIGHT F1 | Brightness | page 4-105 |
|  |  | Video CONTRAST F1 | Contrast | page 4-106 |
|  |  | Video COLOR F1 | Color shade | page 4-107 |
|  |  | Video INF F1 | Save settings/reset to default | page 4-108 |
|  | Video2 | Video2 MEMORY F1 | Memory designation | page 4-109 |
|  |  | Video2 SNAP F1 F2 | Snap | page 4-129 |
|  |  | Video2 SNAP F1 F2 (SIZE) | Snap (SIZE) | page 4-131 |
|  |  | Video2 STROBE F1 F2 | Strobe snap | page 4-133 |
|  |  | Video2 RE_SIZE | Resize | page 4-135 |
|  |  | Video2 ZOOM F1 F2 | Zoom | page 4-136 |
|  |  | Video2 BRIGHT F1 F2 | Brightness | page 4-137 |
|  |  | Video2 CONTRAST F1 F2 | Contrast | page 4-138 |
|  |  | Video2 COLOR F1 F2 | Color shade | page 4-139 |
|  |  | Video2 VIDEOINF F1 F2 | Save settings/reset to default | page 4-140 |
|  |  | Video2 PAUSE F1 | Pause | page 4-141 |
|  |  | Video2 RESTART F1 | Pause cancel | page 4-142 |
|  |  | Video2 DELETE F1 | Delete | page 4-143 |
|  |  | Video2 SNAP_SEQ F1 F2 | Continuous single snap change | page 4-144 |
|  |  | Video2 CLIP_POS F1 F2 F3 | Clip start position change | page 4-146 |
|  |  | Video2 CLIP_SIZE F1 F2 F3 | Clip size change | page 4-147 |


| Category | Command Name | Mnemonic | Contents | Refer to: |
| :---: | :---: | :---: | :---: | :---: |
| PLC | PLC_CLND | PLC_CLND F0 PLC F1 F2 F3 | Calendar control for PLCn | page 4-148 |
|  | PLC_CTL | PLC_CTRL PLC F0 F1 F2 | PLCn control | page 4-150 |
|  | TBL_READ | $\begin{aligned} & \text { TBL_READ F0 <- TABLE : PLC } \\ & \text { F1: F2 } \end{aligned}$ | Device memory map memory read | page 4-152 |
|  | TBL_WRITE | TBL_WRITE TABLE : PLC F1: F0 <- F2 | Device memory map memory write | page 4-153 |
| Temperature Control / PLC2Way | TEMP_READ | TEMP_READ F0 <- TABLE : F1 | Device memory map memory read (PLC2) | page 4-154 |
|  | TEMP_WRITE | TEMP_WRITE TABLE : F0 <- F1 | Device memory map memory write (PLC2) | page 4-155 |
|  | TEMP_CTL | TEMP_CTL F0 F1 | PLC2 control | page 4-156 |
| Ethernet | SEND | SEND F0 C:F1 TO F2 | Transfer on the network | page 4-157 |
|  | EREAD | EREAD F0 = F1 C:F2 F3 | Read on the network | page 4-158 |
|  | EWRITE | EWRITE F0 F1 = F2 C:F3 | Write on the network | page 4-159 |
| CF Card (Recipe) | LD_RECIPE | LD_RECIPE F0 F1 | Read CSV file | page 4-160 |
|  | LD_RECIPE2 | LD_RECIPE2 F0 F1 F2 |  | page 4-163 |
|  | LD_RECIPESEL | LD_RECIPESEL F0 F1 |  | page 4-165 |
|  | LD_RECIPESEL2 | LD_RECIPESEL2 F0 F1 F2 |  | page 4-168 |
|  | SV_RECIPE | SV_RECIPE F0 F1 F2 | Save to CSV file | page 4-172 |
|  | SV_RECIPE2 | SV_RECIPE2 F0 F1 F2 F3 |  | page 4-174 |
|  | SV_RECIPESEL | SV_RECIPESEL F0 F1 |  | page 4-176 |
|  | SV_RECIPESEL2 | SV_RECIPESEL2 F0 F1 F2 |  | page 4-179 |
|  | $\begin{aligned} & \text { SET_RECIPEFOL } \\ & \text { DER } \end{aligned}$ | SET_RECIPEFOLDER F0 | Folder designation | page 4-182 |
|  | $\begin{aligned} & \text { RD_RECIPE_FIL } \\ & \text { E } \end{aligned}$ | RD_RECIPE_FILE F0 F1 | Read CSV file | page 4-184 |
|  | $\begin{aligned} & \text { RD_RECIPE_LIN } \\ & \text { E } \end{aligned}$ | RD_RECIPE_LINE F0 F1 F2 F3 |  | page 4-186 |
|  | $\begin{aligned} & \text { RD_RECIPE_CO } \\ & \text { LUMN } \end{aligned}$ | RD_RECIPE_COLUMN F0 F1 F2 F3 |  | page 4-188 |
|  | $\begin{aligned} & \text { WR_RECIPE_FIL } \\ & \text { E } \end{aligned}$ | WR_RECIPE_FILE F0 F1 | Save to CSV file | page 4-190 |
|  | $\begin{aligned} & \text { WR_RECIPE_LIN } \\ & \text { E } \end{aligned}$ | WR_RECIPE_LINE F0 F1 F2 F3 |  | page 4-192 |
|  | $\begin{aligned} & \text { WR_RECIPE_CO } \\ & \text { LUMN } \end{aligned}$ | WR_RECIPE_COLUMN F0 F1 F2 F3 |  | page 4-194 |
|  | $\begin{aligned} & \text { GET_RECIPE_FI } \\ & \text { LEINFO } \end{aligned}$ | $\begin{aligned} & \text { GET_RECIPE_FILEINFO F0 F1 } \\ & \text { F2 } \end{aligned}$ | CSV file information | page 4-196 |
| CF Card (Sampling) | SMPL_BAK | SMPL_BAK F0 | Save backup | page 4-198 |
|  | SMPL_CSV | SMPL_CSV F0 | Create CSV file | page 4-201 |
|  | SMPL_CSV2 | SMPL_CSV2 F0 F1 | Create CSV file (file name designation) | page 4-205 |
|  | SMPL_SAVE | SMPL_SAVE | Save data on temporary storage | page 4-207 |
|  | SMPLCSV_BAK | SMPLCSV_BAK F0 | Save backup (CSV file) | page 4-209 |
|  | SMPLCSV_BAK2 | SMPLCSV_BAK2 F0 F1 | Save backup (CSV file, file name designation) | page 4-213 |


| Category | Command Name | Mnemonic | Contents | Refer to: |
| :---: | :---: | :---: | :---: | :---: |
| CF Card (Others) | HDCOPY | HDCOPY | Hardcopy | page 4-215 |
|  | HDCOPY2 | HDCOPY2 F0 | Hardcopy | page 4-216 |
|  | HDCOPY3 | HDCOPY3 F0 | Hardcopy (file name designation) | page 4-217 |
|  | SET_DRIVE | SET_DRIVE F0 | Select drive | page 4-218 |
|  | COPY_FILE | COPY_FILE F0 F1 | Copy file | page 4-219 |
|  | MOVE_FILE | MOVE_FILE F0 F1 F2 | Move file | page 4-221 |
|  | READ_FILE | READ_FILE F0 F1 F2 F3 | Read universal file | page 4-223 |
|  | WRITE_FILE | WRITE_FILE F0 F1 F2 | Write to universal file | page 4-225 |
| Real No. <br> Arithmetical Operation | F_ADD(+) | $\mathrm{F} 0=\mathrm{F} 1+\mathrm{F} 2$ (F) | Real number addition | page 4-227 |
|  | F_SUB(-) | $F 0=F 1-F 2(F)$ | Real number subtraction | page 4-228 |
|  | F_MUL(X) | $\mathrm{F} 0=\mathrm{F} 1 \times \mathrm{F} 2(\mathrm{~F})$ | Real number multiplication | page 4-229 |
|  | F_DIV(/) | F0 = F1 / F2 (F) | Real number division | page 4-230 |
| Real No. Statistics | F_SUM | F0 = F_SUM (F1 C:F2) (F) | Sum of real number data | page 4-231 |
|  | F_AVG | F0 = F_AVG (F1 C:F2) (F) | Average of real number data | page 4-232 |
|  | F_MAX | F0 = F_MAX (F1 C:F2) (F) | Maximum of real number data | page 4-233 |
|  | F_MIN | F0 = F_MIN (F1 C:F2) (F) | Minimum of real number data | page 4-234 |
| Others | ;(Comment) | ; | Comment | page 4-235 |
|  | BRIGHT | BRIGHT F0 | Brightness adjustment | page 4-236 |
|  | GET_MSGBLK | GET_MSGBLK F0 F1 | Message acquisition | page 4-237 |
|  | PLC_ULR | PLC_ULR F0 F1 | Read user log | page 4-238 |
|  | RECONNECT | RECONNECT FO | Multi-drop reconnection (PLC1) | page 4-240 |
|  | RECONNECT_EX | RECONNECT_EX PLC F0 F1 | Restart | page 4-241 |
|  | SAMPLE | SAMPLE F0 F1 F2 | Sampling data acquisition | page 4-242 |
|  | SEARCH_FILE | SEARCH_FILE F0 F1 | JPEG file search | page 4-245 |
|  | ADJ_ANGLE | ADJ_ANGLE FO | Adjust viewing angle | page 4-246 |
|  | SAVE_ANGLE | SAVE_ANGLE | Save viewing angle adjustment value | page 4-247 |
|  | ADJ_VOLUME | ADJ_VOLUME F0 F1 F2 | Adjust volume | page 4-248 |
|  | SAVE_VOLUME | SAVE_VOLUME | Save volume | page 4-249 |
|  | TREND REFRESH | TREND REFRESH F0 F1 | Trend sampling | page 4-250 |
|  | SYS | SYS (SET_SCRN) F1 | Screen number designation | page 4-251 |
|  |  | SYS (SET_MOVLP) F1 | Multi-overlap/global overlap setting | page 4-252 |
|  |  | SYS (OVLP_SHOW) F1 | Overlap ON/OFF | page 4-254 |
|  |  | SYS (OVLP_POS) F1 | Overlap relocation | page 4-255 |
|  |  | SYS (GET_MSG) F1 | Message acquisition | page 4-256 |


| Category | Command Name | Mnemonic | Contents | Refer to: |
| :---: | :---: | :---: | :---: | :---: |
| Others | SYS | SYS (GET_XY) F1 | Acquisition of X and Y coordinates on circumference | page 4-258 |
|  |  | SYS (SET_BZ) F1 | Buzzer control | page 4-260 |
|  |  | SYS (GET_TIME) F1 | System time acquisition | page 4-261 |
|  |  | SYS (STA_TIME) F1 | Timer setting | page 4-262 |
|  |  | SYS (GET_CLND) F1 | Calendar acquisition | page 4-264 |
|  |  | SYS (SET_CLND) F1 | Calendar setting | page 4-265 |
|  |  | SYS (SET_BUFNO) F1 | Trend sampling Data sampling | page 4-266 |
|  |  |  | Alarm function | page 4-268 |
|  |  | SYS (GET_SMPL) F1 | Sampling data acquisition | page 4-269 |
|  |  | SYS (GET_SCUR) F1 | Cursor point acquisition | page 4-271 |
|  |  | SYS (GET_BUF) F1 | Alarm mask information acquisition | page 4-273 |
|  |  | SYS (DSP_DATA) F1 | Show/hide numerical data display | page 4-276 |
|  |  | SYS (CHG_DATA) F1 | Change numerical data display property | page 4-277 |
|  |  | SYS (STA_LIST) F1 | Data sheet print | page 4-279 |
|  |  | SYS (RGB_CHG) F1 | Change RGB input parameter | page 4-281 |
|  |  | SYS (SET_RGB) F1 | Switch from/to RGB input screen | page 4-282 |
|  |  |  | Snap/delete RGB input screen | page 4-283 |
|  |  |  | RGB input channel selection | page 4-285 |
|  |  | SYS (SET_BKLT) F1 | Backlight control | page 4-286 |
|  |  | SYS (RESTART) F1 | Restart | page 4-287 |
|  |  | SYS (CONTRAST) F1 | Contrast adjustment | page 4-288 |
|  |  | SYS (CHG_LANG) F1 | Language change | page 4-289 |
|  |  | SYS (RESET_SCRN) F1 | Redisplay screen | page 4-291 |
|  |  | SYS (GET_STATUS_FL) F1 | FL-net information acquisition | page 4-292 |
|  |  | SYS (SET_DSW) F1 | Deadman switch setting | page 4-293 |
|  |  | SYS (OUT_ENQ) F1 | Universal serial | page 4-294 |
|  |  |  | A-link + Net10 | page 4-295 |
|  |  | SYS (SET_SYS_CLND) F1 | System calendar setting | page 4-296 |
| Others | HMI-FUNC | HMI-UserFunc (F1, " ") | DLL function execution | page 4-297 |
|  |  | HMI-LoadDII (F1 , " ") | Load DLL | page 4-298 |
|  |  | HMI-ShutDown | Computer shutdown | page 4-299 |
|  |  | HMI-UserExe (" ") | Application file execution | page 4-300 |
|  |  | HMI-Close | TELLUS termination | page 4-301 |

## Details of Macro Commands

### 4.1 Guide to Chapter 4

4.2 Arithmetical Operation
4.3 Logical Operation
4.4 Statistic
4.5 Mathematics/trigonometric
4.6 Bit Operation
4.7 Conversion
4.8 Transfer
4.9 Comparison
4.10 Macro Operation Control
4.11 FROM Backup
4.12 Printer
4.13 Video
4.14 PLC
4.15 Temperature Control / PLC2Way
4.16 Ethernet
4.17 CF Card (Recipe)
4.18 CF Card (Sampling)
4.19 CF Card (Others)
4.20 Real No. Arithmetical Operation
4.21 Real No. Statistics
4.22 Others

### 4.1 Guide to Chapter 4



Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| $\bigcirc$ O Setting enabled (indirect designation disabled) |  |  |  |  |

Types of memory usable for the command and how to designate them $O$ : Setting enabled (indirect designation disabled) For more information on the types of © : Setting enabled (indirect designation enabled) memory, refer to page 2-17.
For more information on the indirect memory designation, refer to page 2-18.

Example

- \$u100-08 (OFF)



Supplemental remarks

- If you use PLC memory or temperature controller memory that is disabled for bit-by-bit read and write, the macro operation as the following takes place. Ex.) Mitsubishi PLC D100-05 (OFF)

1. One word that specifies the bit is read.
2. The bit specified by the above one word is reset (OFF).
3. The data is written to the PLC.


* If the bit is changed in a sequence program during processing of step 2 , step 3 for data writing is performed.
- $\$ \mathrm{~s} 72$ stores the result of the macro execution.

| Code (DEC) |  |  |  |  |
| :---: | :--- | :---: | :---: | :---: |
| 0 | Normal |  |  |  |
| -1 | Execution error |  |  |  |

Example of command execution

*1 Refer to "V Series Models" in this manual.

### 4.2 Arithmetical Operation

ADD(+)

All models All models $\bigcirc$

F0 = F1 + F2 (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WORD
F0 $=$ F1 + F2 (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DWORD

## Function: Addition

This macro command is used to write the result of [F1] plus [F2] to [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $๑^{{ }^{1}}$ |  |  |
| F1 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |
| F2 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
*1 Available only with the V8 series/TELLUS3 HMI

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 + \$u300 (W)

|  | \$u200 |  | 5 |
| :---: | :---: | :---: | :---: |
| + | \$u300 |  |  |
|  | \$u100 |  | 05 |

- \$u100 = \$u200 + \$u300 (D)

| \$u201 | \$u200 |
| ---: | ---: |
| + \$u301 | \$u300 |
| \$u101 | \$u100 |$+$| 70000 |
| ---: |

## Supplemental remarks

- Operation is performed in the decimal system with signs. Be sure that the result [FO] falls within the permissible range.
$\$ \mathrm{u} 100=\$ \mathrm{u} 200+\$ \mathrm{u} 300(\mathrm{~W})$

* The execution result in the example above is an overflow.

If an operation results in "65535" in the decimal system (WORD) or less, it matches the result in the decimal system without signs.


- In a case where [F1] and [F2] are specified in the following ranges, they are treated as negative values -1 to -32768 .
32768-65535 (DEC)
100000-17777 (OCT)
8000 - FFFF (HEX)
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

SUB(-) $\bigcirc$

## F0 = F1 - F2 (W) <br> WORD <br> F0 = F1 - F2 (D). DWORD

## Function: Subtraction

This macro command is used to write the result of [F1] minus [F2] to [F0].

|  |  | DWORD |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | F1+1 <br> F2+1 <br> F0+1 | F1 |
|  |  |  |  |
| WORD  <br>   <br>   <br>  -F <br>  $=\mathrm{F}$ |  |  |  | F0 |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $๑^{* 1}$ |  |  |
| F1 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |
| F2 | $\odot$ | $\odot^{* 1}$ |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
*1 Available only with the V8 series/TELLUS3 HMI

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 - \$u300 (W)

| \$u200 |
| ---: |
| $-\$$ u300 |
| \$u100 | | 100 |
| ---: |
| $-\quad 40$ |
| 60 |

- $\$ \mathrm{Lu} 100=\$ \mathrm{~L} 200-\$ \mathrm{u} 300$ (D)

| \$u201 | \$u200 |
| ---: | ---: | ---: |
| - \$u301 | \$u300 |
| \$u101 | \$u100 |$\quad$| 70000 |
| ---: |

## Supplemental remarks

- Operation is performed in the decimal system with signs. Be sure that the result [FO] falls within the permissible range.

* The execution result in the example above is an underflow.
- In a case where [F1] and [F2] are specified in the following ranges, they are treated as negative values -1 to -32768 .
32768-65535 (DEC)
100000-17777 (OCT)
8000 - FFFF (HEX)
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

MUL(X)
F0 = F1 x F2 (W)
WORD
F0 = F1 x F2 (D) DWORD

## Function: Multiplication

This macro command is used to write the result of [F1] multiplied by [F2] to [F0].
WORD

| F1 |
| ---: |
| $\times$F2 <br> F0 |

DWORD

| F1+1 | F1 |
| :---: | :---: |
| $\times$$F 2+1$ F2 <br> $F 0+1$ F0 |  |

## Available memory

|  | Internal memory | PLC $1-8$ memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 | $๑^{{ }^{1}}$ |  |  |
| F1 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |
| F2 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |

○: Setting enabled (indirect designation disabled)
(): Setting enabled (indirect designation enabled)
*1 Available only with the V8 series/TELLUS3 HMI

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 × \$u300 (W)

| \$u200 |
| ---: |
| $\times$\$u300 <br> \$u100 <br> $\times \quad 400$ <br> 4000 |

- $\$ \mathrm{u} 100=\$ \mathrm{u} 200 \times \$ \mathrm{u} 300$ (D)



## Supplemental remarks

- Operation is performed in the decimal system with signs. Be sure that the result [FO] falls within the permissible range.

* The execution result in the example above is an overflow.

If an operation results in "65535" (WORD) or less, it matches the result in the decimal system without signs.


- If the result [FO] is outside the permissible range, the extra portion is truncated.

* The execution result in the example above is normal.

In this case, operation is performed in DWORD.


| DEC- |
| :--- |
|  |
| 30000 |
| $\times \quad 3$ |

- In a case where [F1] and [F2] are specified in the following ranges, they are treated as negative values -1 to -32768 .
32768-65535 (DEC)
100000-17777 (OCT)
8000 - FFFF (HEX)
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

DIV(I)
F0 = F1 / F2 (W)
WORD
F0 = F1 / F2 (D).
DWORD

## Function: Division

This macro command is used to write the result of [F1] divided by [F2] to [F0].

WORD


DWORD

| F1+1 | F1 |
| :---: | :---: |
| F2+1 | F2 |
| $F 0+1$ | F0 |

Remainder

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 | $๑^{\star 1}$ |  |  |
| F1 | $\odot$ | $๑^{\star 1}$ |  | $\bigcirc$ |
| F2 | $\odot$ | $๑^{\star 1}$ |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
*1 Available only with the V8 series/TELLUS3 HMI

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 / \$u300 (W)

|  | \$u200 | 100 |  |
| :---: | :---: | :---: | :---: |
| $\div$ | \$u300 | $\div$ | 40 |
|  | \$u100 |  | 2 |

- \$u100 = \$u200 / \$u300 (D)


## Supplemental remarks

- Operation is performed in the decimal system with signs. Be sure that the [F1] value falls within the permissible range.
- In a case where [F1] and [F2] are specified in the following ranges, they are treated as negative values -1 to -32768 .
32768-65535 (DEC)
100000-17777 (OCT)
8000 - FFFF (HEX)
- For the V8 series, the result of macro execution is stored in \$s1056.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| 3 | Calculation operation error |
| -1 | Execution error |



## Function: Remainder of division

This macro command is used to write the remainder of [F1] divided by [F2] to [F0].

WORD


DWORD


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $๑^{\star 1}$ |  |  |
| F1 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |
| F2 | $\odot$ | $๑^{* 1}$ |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
*1 Available only with the V8 series/TELLUS3 HMI

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 \% \$u300 (W)

- \$u100 = \$u200 \% \$u300 (D)



## Supplemental remarks

- Operation is performed in the decimal system with signs. Be sure that the [F1] value falls within the permissible range.
- In a case where [F1] and [F2] are specified in the following ranges, they are treated as negative values -1 to -32768 .
32768-65535 (DEC) 100000-17777 (OCT) 8000 - FFFF (HEX)
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| 3 | Calculation operation error |
| -1 | Execution error |

### 4.3 Logical Operation

AND(\&)

All models $\quad \bigcirc$

F0 = F1 \& F2 (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WORD
F0 = F1 \& F2 (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DWORD
Function: Logical product
This macro command is used to write the result of [F1] ANDed with [F2] bit by bit to [FO].

| WORD | DWORD $^{\text {F1+1 }}$ F1 |  | Logical product |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F1 |  |  | 0 | 0 | 1 | 1 |
| AND |  | AND | AND | AND | AND | AND |
| F2 | F2+1 | F2 | 0 | 1 | 0 | 1 |
| $\downarrow$ |  |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| F0 | F0+1 | F0 | 0 | 0 | 0 | 1 |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> (HEX) | $00000000-$ FFFFFFFF <br> (HEX) |
| F1 |  |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 \& \$u300 (W)

| 15 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u200 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
|  | AND |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \$u300 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
|  | 1-1 $\downarrow$, |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \$u100 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

- \$u100 = \$u200 \& \$u300 (D)

| 31 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u201 | \$u200 | 1 | 1 | 1 | 1 | - | 0 | 0 | 1 | 0 |
|  |  |  | AND |  |  |  |  |  |  |  |
| \$u301 | \$u300 | 0 | 10 |  | 0 | - | 1 | 0 | 0 | 1 |
|  |  |  |  |  |  | $\downarrow$ |  |  |  |  |
| \$u101 | \$u100 | 0 | $1{ }^{1} 0$ |  | 0 |  | 0 | 0 | 0 | 0 |

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

OR(|)

| All models | $\bigcirc$ |
| :--- | :--- |

$$
\begin{aligned}
& \text { F0 }=\text { F1 | F2 (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \\
& \text { F0 }=\text { F1 | F2 (D) }
\end{aligned}
$$

## Function: Logical add

This macro command is used to write the result of [F1] ORed with [F2] bit by bit to [FO].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | ๑ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\odot$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> (HEX) | $00000000-$ FFFFFFFF <br> (HEX) |
| F1 |  |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 | \$u300 (W)

- \$u100 = \$u200 | \$u300 (D)

| 31 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u201 | \$u200 | 1 | 1 | 1 | 1 | - | 0 | 0 | 1 | 0 |
|  |  | OR |  |  |  |  |  |  |  |  |
| \$u301 | \$u300 | 0 | 1 | 0 | 0 | $\downarrow$ | 1 | 0 | 0 | 1 |
|  |  |  |  |  |  |  |  |  |  |  |
| \$u101 | \$u100 | 1 | 1 | 1 | 1 | - | 1 | 0 | 1 | 1 |

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## XOR(^)

All models
F0 = F1 ^ F2 (W)
WORD
F0 = F1 ^ F2 (D) DWORD

Function: Exclusive OR
This macro command is used to write the result of [F1] XORed with [F2] bit by bit to [FO].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | 〇 |  |  | $\bigcirc$ |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> (HEX) | $00000000-$ FFFFFFFF <br> (HEX) |
| F1 |  |  |
| F2 |  |  |

## Example

- \$u100 = \$u200 ^ \$u300 (W)

| 15 ( 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u200 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
|  | XOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \$u300 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
|  | $\downarrow$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \$u100 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |

- $\$ \mathrm{u} 100=\$ \mathrm{u} 200$ ^ $\$ \mathrm{u} 300$ (D)

| 31 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u201 | \$u200 | 1 | 1 | 1 | 1 | - | 0 | 0 | 1 | 0 |
|  |  | XOR |  |  |  |  |  |  |  |  |
| \$u301 | \$u300 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
|  |  |  |  |  |  | $\downarrow$ |  |  |  |  |
| \$u101 | \$u100 | 1 | 0 | 1 | 1 | - | 1 | 0 | 1 | 1 |

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

SHL(<<)

All models
F0 $=$ F1 << F2 (W)
WORD
F0 = F1 << F2 (D) .DWORD

## Function: Left shift

This macro command is used to perform logical shift of [F1] to the left by the number of bits specified in [F2] and write the result to [F0]. The higher-order bits (by the number in [F2]) are truncated. " 0 " is assigned to the lower-order bits (by the number in [F2]).


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> $(H E X)$ | $00000000-$ FFFFFFFF |
| F1 | $0-15$ | $0-31$ |
| F2 | HEX) |  |

## Example

$$
\text { - \$u100 = \$u200 << } 3 \text { (W) }
$$

- \$u100 $=\$ \mathrm{Lu} 200 \ll 2$ (D)
\$u201
\$u101 \$u100 $\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \text { Truncated } & 1 & - & 0 & 1 & 0 & 0 & & 0 & 0 & 1 & 0\end{array}\right)$


## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error $\quad$ Contents |

SHR(>>)

All models $\bigcirc$

F0 = F1 >> F2 (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WORD
F0 $=$ F1 >> F2 (D) DWORD

## Function: Right shift

This macro command is used to perform logical shift of [F1] to the right by the number of bits specified in [F2] and write the result to [F0]. The lower-order bits (by the number in [F2]) are truncated. "0" is assigned to the higher-order bits (by the number in [F2]).


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | ○ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF |  |
| F1 | $(\mathrm{HEX})$ | $00000000-$ FFFFFFFF |
| F1 | $0-15$ | $0-31$ |
| F2 |  |  |

## Example

- \$u100 = \$u200 >> 3 (W)


\$u100 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | Truncated |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |

- $\$ \mathrm{u} 100=\$ \mathrm{u} 200 \gg 2$ (D)



## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.4 Statistic

MAX


F0 = MAX (F1 C : F2) (W) . . . . . . . . . . . . . . . . . . . . . . . . WORD


## Function: Maximum

This macro command is used to find the maximum data at the location starting from the address specified in [F1] and write the result to [FO]. The data count is specified in [F2].

WORD


DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | ○ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) | $0-512$ |
| F2 | $0-512$ | 0 |

## Example

- \$u100 = MAX (\$u200 C : 5) (W)

| \$u200 | -100 | MAX |  |
| :---: | :---: | :---: | :---: |
| \$u201 | 1 |  |  |
| \$u202 | 32767 | $\longrightarrow$ \$u100 | 32767 |
| \$u203 | -4500 |  |  |
| \$u204 | 336 |  |  |

- $\$ u 100=$ MAX (\$u200 C : 5) (D)



## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

MIN

All models O

Function: Minimum
This macro command is used to find the minimum data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | ○ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ <br> (Decimal system with signs) | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | $0-512$ | $0-512$ |
| F2 |  | 0 |

## Example

- \$u100 = MIN (\$u200 C : 5) (W)

- $\$ \mathrm{u} 100=$ MIN (\$u200 C : 5) (D)



## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

AVG F0 = AVG (F1 C : F2) (W) ................................. WORD
F0 = AVG (F1 C : F2) (D) . . . . . . . . . . . . . . . . . . . . . . . . .DWORD

## Function: Average

This macro command is used to average the data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | O |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | (Decimal system with signs) | $0-512$ |
| F2 | $0-512$ | 0 |

## Example

- \$u100 = AVG (\$u200 C : 5) (W)

| \$u200 | -100 |  |
| :---: | :---: | :---: |
| \$u201 | 200 | AVG |
| \$u202 | 30000 | $\longrightarrow$ \$u100 5200 |
| \$u203 | -4500 |  |
| \$u204 | 400 |  |

- \$u100 = AVG (\$u200 C : 5) (D)



## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 3 | Calculation operation error |
| -1 | Execution error |

```
F0 = SUM (F1 C : F2) (W)
    WORD
F0 = SUM (F1 C : F2) (D)
DWORD
```


## Function: Sum

This macro command is used to determine the sum of the data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | O |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
○: Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $-32768-+32767$ <br> (Decimal system with signs) | $-2147483648-+2147483647$ <br> (Decimal system with signs) |
| F1 | $0-512$ | $0-512$ |
| F2 |  | 0 |

## Example

- \$u100 = SUM (\$u200 C : 5) (W)

| \$u200 | -100 |  |
| :---: | :---: | :---: |
| \$u201 | 200 | SUM |
| \$u202 | 30000 | $\longrightarrow$ \$u100 26000 |
| \$u203 | -4500 |  |
| \$u204 | 400 |  |

- \$u100 = SUM (\$u200 C : 5) (D)

| \$u201 \$u200 | -70000 |  |
| :---: | :---: | :---: |
| \$u203 \$u202 | 70000 | SUM |
| \$u205 \$u204 | 2000000000 | $\longrightarrow$ \$u101 \$u100 2000000000 |
| \$u207 \$u206 | -8900000 |  |
| \$u209 \$u208 | 8900000 |  |

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

### 4.5 Mathematics/trigonometric

$$
\operatorname{EXP} \quad F 0=\operatorname{EXP}(F 1)(F)
$$

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## Function: Calculation of the exponent

This macro command is used to store the exponent of [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- \$u100 = EXP (\$u200) (F)

$$
2.71828=e^{1.0}
$$

When \$u200 = "1.0", on command execution " 2.71828 " is stored in $\$ u 100$.

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real number, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in $\$ \mathbf{s} 1056$. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow $^{*}$ |
| 2 | Underflow $^{*}$ |

[^0]EXPT

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

$F 0=E X P T(F 1, F 2)(F)$

## Function: Calculation of powers

This macro command is used to store [F1] to the power of [F2] in [F0]. Specify [F0], [F1], and [F2] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 |  |
| F1 | IEEE 32-bit single precision real number |
| F2 |  |

## Example

- \$u100 = EXPT (\$u200,\$u300) (F)

$$
8=2^{3}
$$

When \$u200 = " 2 " and \$u300 = " 3 ", on command execution " 8 " is stored in $\$ \mathrm{u} 100$.

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow $^{\star}$ |
| 2 | Underflow $^{*}$ |

* An indefinite value is stored in [F0].

LN

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

$\mathrm{FO}=\mathrm{LN}(\mathrm{F} 1)(\mathrm{F})$

## Function: Calculation of natural logarithms

This macro command is used to store the value of the natural logarithm of [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- \$u100 = LN (\$u200) (F)

$$
2.302585=\log _{\mathrm{e}}(10.0)
$$

When \$u200 = "10.0", on command execution " 2.302585 " is stored in $\$ \mathrm{u} 100$.

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real number, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow $^{*}$ |
| 2 | Underflow $^{*}$ |

[^1]
## LOG <br> F0 = LOG(F1) (F)

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## Function: Calculation of common logarithms

This macro command is used to store the value of the common logarithm of [F1] in [FO].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- $\$ u 100=$ LOG (\$u200) (F)

$$
1.0=\log _{10}(10.0)
$$

When \$u200 = "10.0", on command execution " 1.0 " is stored in $\$ \mathrm{u} 100$.

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real number, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow $^{*}$ |
| 2 | Underflow $^{*}$ |

[^2]
## SQRT

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

F0 $=\operatorname{SQRT}(F 1)(F)$

## Function: Calculation of square roots

This macro command is used to store the value of the square root of [F1] in [F0]. Specify [F0] and [F1] as floating decimal point (FLOAT) type values.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- \$u100 = SQRT (\$u200) (F)

$$
1.41421=\sqrt{ }(2.0)
$$

When $\$ \mathrm{u} 200=$ " 2.0 ", on command execution " 1.41421 " is stored in $\$ \mathrm{u} 100$.

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real number, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow $^{*}$ |
| 2 | Underflow $^{*}$ |

[^3]> © : Setting enabled (indirect designation enabled)
ABS

| All V8 models | O |
| :--- | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | O |
| TELLUS2 HMI |  |

F0 = ABS (F1) (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WORD
F0 = ABS (F1) (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DWORD
F0 = ABS (F1) (F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FLOAT
Function: Absolute value
This macro command is used to store an absolute value of [F1] in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | ๑ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD | FLOAT |
| :---: | :---: | :---: | :---: |
| F0 | -32767 to +32767 | -2147483647 to | IEEE 32-bit single |
| (Decimal system with |  |  |  |
| signs) |  |  |  | | +2147483647 |
| :---: |
| F1 | | (Decimal system with signs) |
| :---: | | number |
| :---: |
| number |

## Example

- \$u100 = ABS (\$u200) (W)

When \$u200 = " -1 ", on command execution " 1 " is stored in \$u100.

| \$u200 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | BIN <br> HEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | F |  |  |  | F |  |  |  |  | F |  |  |  |  | F |  |  |  |  |
|  | -1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | DEC |
| \$u100 | ABS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 1 | BIN <br> HEX |
|  | 0 |  |  |  |  | 0 |  |  |  | 0 |  |  |  |  | 1 |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | DEC |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow $^{\star}$ |
| 2 | Underflow $^{*}$ |

[^4]NEG

| All V8 models | O |
| :--- | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | O |
| TELLUS2 HMI |  |

F0 = NEG (F1) (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WORD
F0 = NEG (F1) (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DWORD
F0 = NEG (F1) (F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FLOAT

## Function: Sign inversion

This macro command is used to store a value with its sign inverted from [F1] in [F0].


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD | FLOAT |
| :---: | :---: | :---: | :---: |
| F0 | -32767 to +32767 <br> (Decimal system with <br> signs) | -2147483647 to <br> +2147483647 <br> (Decimal system with signs) | IEEE 32-bit single <br> precision real <br> number |
| F1 | numben |  |  |

## Example

- \$u100 = NEG (\$u200) (W)

When \$u200 = " -1 ", on command execution " 1 " is stored in $\$ u 100$.


## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056.

| Code (DEC) | Contents |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow* $^{\star}$ |

* An indefinite value is stored in [F0].

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## Function: Sine

This macro command is used to store a sine of the angle (in radians) specified for [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain the value for $\sin 90^{\circ}$ in radians;
$\$ \mathrm{~L} 200$ = RAD (90) (F)
$\$ \mathrm{~L} 100=$ SIN (\$u200) (F)
The operation result of " 1 " is stored in $\$ u 100$.
* The sine, cosine and tangent of the trigonometric functions can be obtained based on the formulae below.
- Radian (circular measure)
$1 \mathrm{rad}=360 / 2 \pi$
$=$ approx. 57.29578 deg .

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$



## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- To convert the unit of an angle, use the macro command of DEG (page 4-32) or RAD (page 4-33).
cos

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## F0 = COS (F1) (F) <br> FLOAT

## Function: Cosine

This macro command is used to store a cosine of the angle (in radians) specified for [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain the value for $\cos 0^{\circ}$ in radians;
$\$ \mathrm{u} 200=$ RAD (0) (F)
\$u100 = COS (\$u200) (F)
The operation result of " 1 " is stored in \$u100.
* For more information on $\cos \theta$ of the trigonometric functions, refer to "Example" of "Function: Sine" on page 4-26.


## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- To convert the unit of an angle, use the macro command of DEG (page 4-32) or RAD (page 4-33).

TAN

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

F0 $=$ TAN (F1) $(F)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FLOAT

## Function: Tangent

This macro command is used to store a tangent of the angle (in radians) specified for [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain the value for $\tan 45^{\circ}$ in radians;
$\$ \mathrm{~L} 200$ = RAD (45) (F)
$\$ \mathrm{Lu} 100$ = TAN (\$u200) (F)
The operation result of " 1 " is stored in $\$ u 100$.
* For more information on $\tan \theta$ of the trigonometric functions, refer to "Example" of "Function: Sine" on page 4-26.


## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056.

| Code (DEC) | Contents |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow $^{\star 1}$ |
| 2 | Underflow $^{\star 1}$ |
| 3 | Operation execution error $^{\star 2}$ |

*1 An indefinite value is stored in [F0].
*2 When the value specified for [F1] is $\pi \times(0.5+n), "-1 "$ is stored in [F0]. ( $n$ : integer)

- To convert the unit of an angle, use the macro command of DEG (page 4-32) or RAD (page 4-33).


## ASIN

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

$F 0=A S I N(F 1)(F)$
. FLOAT

## Function: Arcsine

This macro command is used to store an arcsine of the angle (in radians) specified for [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
(): Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain the value for $\sin ^{-1} 1$; $\$ \mathrm{~L} 100$ = ASIN (1) (F)
The operation result of " 1.570796 " $(=\pi / 2)$ is stored in \$u100.
* The $\sin ^{-1}$ of the trigonometric functions is expressed in the graph shown on the right.



## Supplemental remarks

- For more information on the IEEE 32 -bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in $\$ s 1056$.

| Code (DEC) | Contents |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow $^{* 1}$ |
| 2 | Underflow $^{* 1}$ |
| 3 | Operation execution error ${ }^{* 2}$ |

*1 An indefinite value is stored in [F0].
*2 When the value specified for $[F 1]$ is outside the range from " -1 " to " 1 ", " -1 " is stored in [FO].

- To convert the unit of an angle, use the macro command of DEG (page 4-32) or RAD (page 4-33).

ACOS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

F0 = ACOS (F1) (F).
FLOAT

## Function: Arccosine

This macro command is used to store an arccosine of the angle (in radians) specified for [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain the value for $\cos ^{-1} 0$;
$\$ 4100=\operatorname{ACOS}(0)(F)$
The operation result of " 1.570796 " ( $=\pi / 2$ ) is stored in \$u100.
* The $\cos ^{-1}$ of the trigonometric functions is expressed in the graph shown on the right.



## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056.

| Code (DEC) | Contents |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow $^{\star 1}$ |
| 2 | Underflow $^{\star 1}$ |
| 3 | Operation execution error $^{\star 2}$ |

*1 An indefinite value is stored in [F0].
*2 When the value specified for [F1] is outside the range from " -1 " to " 1 ", " -1 " is stored in [F0].

- To convert the unit of an angle, use the macro command of DEG (page 4-32) or RAD (page 4-33).


## ATAN

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## F0 = ATAN (F1) (F)

FLOAT

## Function: Arctangent

This macro command is used to store an arctangent of the angle (in radians) specified for [F1] in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
() : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain the value for $\tan ^{-1} 0$;
$\$ \mathrm{~L} 00=$ ATAN (0) (F)
The operation result of " 0 " is stored in $\$$ u100.
* The $\tan ^{-1}$ of the trigonometric functions is expressed in the graph shown on the right.



## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056.

| Code (DEC) |  |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow |
| 2 | Underflow $^{*}$ |

* An indefinite value is stored in [FO].
- To convert the unit of an angle, use the macro command of DEG (page 4-32) or RAD (page 4-33).

DEG

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

F0 = DEG (F1) (F)
FLOAT

## Function: Convert radians to degrees

This macro command is used to convert the unit of an angle specified for [F1] from radians to degrees and store the converted value in [F0].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain a value in degrees; $\$ \mathrm{~L} 00=$ ASIN (1) (F)
\$u200 = DEG (\$u100) (F)
The operation result of " 90 " is stored in $\$ u 200$.


## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056.

| Code (DEC) |  |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow $^{\star}$ |
| 2 | Underflow $^{\star}$ |

* An indefinite value is stored in [F0].


## RAD

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

> F0 = RAD (F1) (F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FLOAT

## Function: Convert degrees to radians

This macro command is used to convert the unit of an angle specified for [F1] from degrees to radians and store the converted value in [FO].
Specify [F0] and [F1] as floating decimal point (FLOAT) type values.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
(): Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |

## Example

- To obtain $180^{\circ}$ in radians;
$\$ u 100$ = RAD (180) (F)
The operation result of "3.141592" $(=\pi)$ is stored in $\$ u 100$.


## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in $\$ \mathbf{s} 1056$.

| Code (DEC) |  |
| :---: | :--- |
| 0 | Normal |
| 1 | Overflow* |
| 2 | Underflow $^{*}$ |

* An indefinite value is stored in [F0].


### 4.6 Bit Operation

BSET

All models
All models $\bigcirc$

FO (ON)

Function: Bit set
This macro command is used to set (ON) the memory bit specified in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Example

- \$u100-08 (ON)



## Supplemental remarks

- If you use PLC memory or temperature controller memory that is disabled for bit-by-bit read and write, the macro operation as the following takes place.
Ex.) Mitsubishi PLC D100-05 (ON)

1. One word that specifies the bit is read.
2. The bit specified by the above one word is set (ON).
3. The data is written to the PLC.


* If the bit is changed in a sequence program during processing of step 2, step 3 for data writing is performed.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## BCLR

All models

## F0 (OFF)

## Function: Bit reset

This macro command is used to reset (OFF) the memory bit specified in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Example

- \$u100-08 (OFF)



## Supplemental remarks

- If you use PLC memory or temperature controller memory that is disabled for bit-by-bit read and write, the macro operation as the following takes place.
Ex.) Mitsubishi PLC D100-05 (OFF)

1. One word that specifies the bit is read.
2. The bit specified by the above one word is reset (OFF).
3. The data is written to the PLC.

4. 



* If the bit is changed in a sequence program during processing of step 2 , step 3 for data writing is performed.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## BINV

All models

FO (INV)

## Function: Bit inversion

This macro command is used to invert the memory bit specified in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Example

- \$u100-08 (INV)



## Supplemental remarks

- If you use PLC memory or temperature controller memory that is disabled for bit-by-bit read and write, the macro operation as the following takes place.
Ex.) Mitsubishi PLC D100-05 (INV)

1. One word that specifies the bit is read.
2. The bit specified by the above one word is inverted.
3. The data is written to the PLC.

4. 



* If the bit is changed in a sequence program during processing of step 2, step 3 for data writing is performed.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.7 Conversion

BCD

```
F0 = F1 (W) BCD
WORD
F0 = F1 (D) BCD
DWORD
```


## Function: Conversion to BCD

This macro command is used to convert the binary data specified in [F1] to BCD and write the result to [FO].


DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |

O : Setting enabled (indirect designation disabled)
๑: Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0-9999$ <br> (BCD) | $0-99999999$ <br> (BCD) |
| F1 | $0-9999$ <br> (Decimal system without signs) | $0-99999999$ <br> (Decimal system without signs) |

## Example

- \$u100 = \$u200 (W) BCD



## Supplemental remarks

- If the value in [F1] is outside the permissible range, [F0] becomes " 0 ".
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

BIN
F0 = F1 (W) BIN
WORD
F0 = F1 (D) BIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DWORD

## Function: Conversion to BIN

This macro command is used to convert the BCD data specified in [F1] to binary data and write the result to [F0].

WORD


DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |

> O: Setting enabled (indirect designation disabled)
> ©: Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0-9999$ <br> (Decimal system without signs) | $0-99999999$ <br> (Decimal system without signs) |
| F1 | $0-9999$ <br> (BCD) | $0-99999999$ <br> (BCD) |

## Example

- \$u100 = \$u200 (W)BIN

| \$u200 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |  | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | $\begin{aligned} & \text { BIN } \\ & \text { HEX } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 |  |  |  | 1 |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |  |  |
|  | 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | BCD |
| \$u100 | BIN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | BIN |
|  | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |  | 1 | 0 | 0 |  |
|  | 0 |  |  |  | 0 |  |  |  |  |  | 6 |  |  |  | 4 |  |  |  |  | HEX |
|  | 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | DEC |

## Supplemental remarks

- If the value in [F1] is outside the permissible range, [F0] becomes " 0 ".
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## CWD

All models O

F0 = F1 D <-W

## Function: Convert one-word $\rightarrow$ double-word

This macro command is used to convert the one-word data with sign specified in [F1] to double-word data with sign and write the result to [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |

: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
Setting range

| Memory | Value |
| :---: | :---: |
| F0 | $-32768-+32767$ |
| F0+1 | (Decimal system with signs) |
| F1 |  |

## Example

- \$u100 = \$u200 D <- W
$\$ 4200$

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F |  |  |  | F |  |  |  | 9 |  |  |  | C |  |  |  |  |
|  | -100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

CWD

-100

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## CVP

All models

F0 = F1 (W) PLC <-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . WORD
F0 = F1 (D) PLC <- . . . . . . . . . . . . . . . . . . . . . . . . . . . . DWORD

## Function: Convert binary data to PLC1-format data

This macro command is used to convert the binary data specified in [F1] to the PLC1-format data and write the result to [F0].
The following PLCs manipulate PLC-format data.

- Fuji Electric: MICREX-F all types
- Yaskawa: Memobus [Transmission Mode: Type 1]
- OMRON: All [Transmission Mode: Transmission Mode 2]


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | $\odot$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

- The available memory address range and the type of data vary, depending on the PLCs. Refer to the PLC manual for details.


## Example

- Fuji MICREX-F F70S BCD with signs (-7999 to +7999)

The most significant bit
OFF: Positive
ON: Negative
\$u100 = \$u200 (W) PLC<-


## Supplemental remarks

- The macro command is used in combination with MOV or BMOV.
- To convert to characteristic data other than for PLC1, use "CVPFMT" (page 441).
- For the V8 series, the result of macro execution is stored in \$s1057.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## CVPFMT

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

> F0 = F1 (W) PLC F2 <- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
> F0 = F1 (D) PLC F2 <- . .

## Function: Convert binary data to PLC-format data specified at [F2]

This macro command is used to convert the binary data specified in [F1] to the PLC-format data specified at [F2] and write the result to [F0].
The following PLCs manipulate PLC-format data.

- Fuji Electric: MICREX-F all types
- Yaskawa: Memobus [Transmission Mode: Type 1]
- OMRON: All [Transmission Mode: Transmission Mode 2]


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | The available memory address range and the type of data vary, <br> depending on the PLCs. |
| F1 | Refer to the PLC manual for details. |

## Example

- Fuji's MICREX-F series is connected as PLC2.
- Fuji MICREX-F F70S BCD with signs (-7999 to +7999 )

The most significant bit
OFF: Positive
ON: Negative $\$ \mathrm{~L} 100=\$ \mathrm{u} 200$ (W) PLC2 <-


## Supplemental remarks

- The macro command is used in combination with MOV or BMOV.
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

CVB

All models

F0 = F1 (W) <- PLC.
WORD
F0 = F1 (D) <- PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DWORD

## Function: Convert PLC1-format data to binary data

This macro command is used to convert the PLC1-format data specified in [F1] to binary data and write the result to [F0].
The following PLCs manipulate PLC-format data.

- Fuji Electric: MICREX-F all types
- Yaskawa: Memobus [Transmission Mode: Type 1]
- OMRON: All [Transmission Mode: Transmission Mode 2]


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

- The available memory address range and the type of data vary, depending on the PLCs. Refer to the PLC manual for details.


## Example

- Fuji MICREX-F F70S BCD with signs (-7999 to +7999)

The most significant bit
OFF: Positive
ON: Negative
\$u100 = \$u200 (W) <-PLC

$\$ 4100$


## Supplemental remarks

- The macro command is used in combination with MOV or BMOV.
- To convert to characteristic data other than for PLC1, use "CVBFMT" (page 443).
- For the V8 series, the result of macro execution is stored in $\$ s 1057$.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

CVBFMT

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

$$
\begin{aligned}
& \text { F0 = F1 (W) <- PLC F2 } \\
& \text { WORD } \\
& \text { F0 = F1 (D) <- PLC F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .DWORD }
\end{aligned}
$$

## Function: Convert PLC-format data specified at [F2] to binary data

This macro command is used to convert the PLC-format data specified at [F2] in
[F1] to the binary data and write the result to [F0].
The following PLCs manipulate PLC-format data.

- Fuji Electric: MICREX-F all types
- Yaskawa: Memobus [Transmission Mode: Type 1]
- OMRON: All [Transmission Mode: Transmission Mode 2]


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | The available memory address range and the type of data vary, <br> depending on the PLCs. |
| F1 | Refer to the PLC manual for details. |

## Example

- Fuji's MICREX-F series is connected as PLC2.
- Fuji MICREX-F F70S BCD with signs (-7999 to +7999 )

The most significant bit
OFF: Positive
ON: Negative
$\$ \mathrm{~L} 100=\$ \mathrm{~L} 200(\mathrm{~W})<-\mathrm{PLC} 2$


## Supplemental remarks

- The macro command is used in combination with MOV or BMOV.
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SWAP

All models

F0 = C : F1 (SWAP)

## Function: Swap MSB with LSB

This macro command is used to perform a swap between the higher-order byte and the lower-order byte of the data at the location starting from the address specified in [FO]. The data count is specified in [F1].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $0000-$ FFFF <br> (HEX) |
| F1 | $0-1024$ |

## Example

- \$u100 C : 2 (SWAP)



## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## CHR

All models

F0 = ' '

## Function: Convert text $\rightarrow$ code

This macro command is used to convert the text placed in quotation marks ' ' to the shifted JIS/ASCII codes and write the result to [FO].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :---: | :---: |
| F0 | Shifted JIS/ASCII | 82 bytes maximum <br> Variable depending on the bytes <br> of the text |
| F0+1 |  | 80 bytes maximum |
| $:$ | Text |  |
| ,$'$ |  |  |

## Example

- When [MSB $\rightarrow$ LSB] is selected for [Text Process] on the [Communication Setting] tab window.
$\$ \mathrm{~L} 100=$ string

| Text | string |  |  |  | HEX | ts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CHR $\downarrow$ |  |  |  |  |  |
| \$u100 | 7 | 3 | 7 | 4 |  |  |
| \$u101 | 7 | 2 | 6 | 9 | HEX | ir |
| \$u102 | 6 | E | 6 | 7 | HEX | gn |
| \$u103 | 0 | 0 | 0 | 0 | HEX | Null code |

## Supplemental remarks

- Swap between the higher-order byte and the lower-order byte can be set by selecting an option for [Text Process] on the [Communication Setting] tab window in the [Device Connection Setting] dialog.
- Regardless of the setting above, use a "STRING" command (page 4-46) for [LSB $\rightarrow$ MSB] conversions.
- A null code is added to the end. Even-number-byte text thereby uses one extra word.
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## STRING

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

F0 = ' '(STRING)

Function: Convert text $\rightarrow$ code
This macro command is used to convert the text placed in quotation marks " ' to the shifted JIS/ASCII codes and write the result to [FO].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :---: | :--- |
| F0 | Shifted JIS/ASCII | 128 bytes maximum <br> Variable depending on the bytes <br> of the text |
| F0+1 |  | 128 bytes maximum |
| $: ~$ | Text |  |
| ' |  |  |

## Example

| \$u100 = string |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Text | string |  |  |  | HEX | ts |
|  | CHR $\downarrow$ |  |  |  |  |  |
| \$u100 | 7 | 4 | 7 | 3 |  |  |
| \$u101 | 6 | 9 | 7 | 2 | HEX | ir |
| \$u102 | 6 | 7 | 6 | E | HEX | gn |
| \$u103 | 0 | 0 | 0 | 0 | HEX | Null code |

## Supplemental remarks

- Regardless of the [Text Process] setting on the [Communication Setting] tab window in the [Device Connection Setting] dialog for PLC1, the data is stored in memory in the [LSB $\rightarrow$ MSB] sequence.
- A null code is added to the end. Even-number-byte text thereby uses one extra word.
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## CVFD



## F0(D) <- F1 (F) F2 (D)

## Function: Convert floating decimal point $\rightarrow$ 32-bit binary

This macro command is used to convert the 32-bit single precision real number specified in [F1] to 32-bit binary data and store the result in [F0].
[F2] specifies the exponent of " 10 " at the time of conversion.
If $[F 2]=0$, rounding to the nearest whole number ${ }^{\star}$ is performed. If $[F 2]=1$, rounding to the nearest tenth ${ }^{*}$ is performed. The result is stored in [FO].

* Rounding down and rounding up are also possible. Refer to page 4-48.
 $0<$ Exponent < 255 $(-1)^{\left.\text {Sign }_{\times(1}+\text { Mantissa } \times 2^{-23}\right) \times 2^{(\text {Exponent - 127) }}}$ $(-1)^{\text {Sign }_{\times}}\left(\right.$Mantissa $\left.\times 2^{-23}\right) \times 2^{-126}$
Exponent $=0$, Mantissa $\neq 0$
0
Sign $=0$, Exponent $=255$,
Mantissa $=0$
Sign = 1, Exponent $=255$,
Mantissa $=0$
Exponent $=255$, Mantissa $\neq 0 \quad: \mathrm{NaN}$
CVFD $\downarrow$
FO

| 31 | 30 | 29 | - | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{31}$ | $2^{30}$ | $2^{29}$ | - | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 |  |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $-2147483648-2147483647$ (BIN) |
| F1 | IEEE 32-bit single precision real number |
| F2 | $-32-+32$ |

## Example

- \$u100 (D) <- \$u200 (F) 0 (D)

- \$u100 (D) <- \$u200 (F) 1 (D)



## Supplemental remarks

- You can select whether to round to the nearest whole number, round down or round up by specifying the appropriate value for $\$$ s 99 .*

| Setting | Operation |  |
| :---: | :---: | :--- |
| Other than 1 or 2 | Round to the <br> nearest whole <br> number | $0-4:$ Round down <br> $5-9:$ Round up |
| 1 | Round down |  |
| 2 | Round up | 0: Round down <br> Other than 0: Round up |

* If [Retain compatibility with negative value handling of CVFD macro command] is checked in the [General Settings] tab window ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [General Settings]), the action to round down is performed, irrespective of the value in memory at $\$ \mathrm{~s} 99$.
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## CVDF



## F0(F) <- F1 (D) F2 (D)

## Function: Convert 32-bit binary $\rightarrow$ floating decimal point

This macro command is used to convert the 32-bit binary data specified in [F1] to 32-bit single precision real number and store the result in [FO].
[F2] specifies the exponent of "10" at the time of conversion.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 |  |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | IEEE 32-bit single precision real number |
| F1 | $-2147483648-2147483647$ (BIN) |
| F2 | $-32-+32$ |

## Example




## Supplemental remarks

The V series manipulates 32-bit single precision real numbers. Therefore, in the case of 24-bit binary data that exceeds the significant digit (-16777216 to 16777215 in the decimal system), the figure at the 25th bit from the leftmost digit of the converted binary data is rounded up and the figures at the 26th bit and after are truncated. Since the value obtained in the above manner is used for conversion to real number, an error is introduced.

Because the effective digit is exceeded, the figure at the 25th bit from the leftmost digit of the converted binary data is rounded up.


- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

CLND_TO_GRE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## CLND_TO_GRE FO F1 F2

## Function: Convert calendar data $\rightarrow$ GMT-based UNIX time

This macro is used to convert the calendar data [F1] in format [F2] to the UNIX time based on GMT, and to store the converted result in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |
| :---: | :---: | :---: | :---: |
| F0 | Time data 0 | DEC only |  |
| F0+1 | Time data 1 | Time data 1 | Time data 0 |
|  |  | GMT-based UNIX time from January 1, 1970 |  |
| F1 | 4 or 2 digits: Year |  |  |
| F1+1 | 1-12: Month |  |  |
| F1+2 | 1-31: Day |  |  |
| F1+3 | 0-23: Hour |  |  |
| F1+4 | 0-59: Minute |  |  |
| F1+5 | 0-59: Second |  |  |
| F2 | $\begin{aligned} & \text { Data format for [F1] } \\ & \text { 0: DEC } \\ & \text { 1: BCD } \end{aligned}$ |  |  |

$: \leftarrow \mathrm{V}$ series (return data)

## Example

The calendar data in \$u200 - \$u205 in DEC format, 17 (hour):25 (minutes):10 (seconds) on June 10 in 2010, is converted to the GMT-based UNIX time, and the converted result is stored in \$u100 and \$u101.
\$u200 = 2010 (W)
\$u201 = 6 (W)
$\$ \mathrm{u} 202$ = $10(\mathrm{~W})$
$\$ \mathrm{u} 203=17(\mathrm{~W})$
\$u204 = 25 (W)
\$u205 = 10 (W)
$\$ \mathrm{~L} 300=0(\mathrm{~W})$
CLND_TO_GRE \$u100 \$u200 \$u300
The GMT-based UNIX time " 1276190710 seconds" is obtained.
Time data $0 \rightarrow \$$ u100 = 8182 DEC
Time data $1 \rightarrow$ \$u101 = 19473 DEC

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |

## Restrictions

- When setting a numerical data display to show the converted result of calendar data, 3 (hour):14 (minutes):7 (seconds) on January 19, 2038 or after, enable the display to show 2 -word long data without sign.
- This macro handles any year divisible by 4 as a leap year. For example, the year 2100 is recognized as a leap year though it is not so. Therefore, an error of one day will result.
- The calendar data displayable on the V8 unit ranges from January 1, 2006 to December 31, 2105. Any data outside this range cannot be converted with this macro correctly.

GRE_TO_CLND

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## GRE_TO_CLND F0 F1 F2

## Function: Convert GMT-based UNIX time $\rightarrow$ calendar data

This macro is used to convert the UNIX time based on GMT in [F1] to the calendar data in format [F2], and to store the converted result in [FO].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | ○ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
( ) : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |
| :---: | :---: | :---: | :---: |
| F0 | 4 digits: Year |  |  |
| F0+1 | 1-12: Month |  |  |
| F0+2 | 1-31: Day |  |  |
| F0+3 | 0-23: Hour |  |  |
| F0+4 | 0-59: Minute |  |  |
| F0+5 | 0-59: Second |  |  |
| F0+6 | 0 : Sunday <br> 1: Monday <br> 2: Tuesday <br> 3: Wednesday <br> 4: Thursday <br> 5: Friday <br> 6: Saturday |  |  |
| F1 | Time data 0 | DEC only |  |
|  | Time data 1 | Time data 1 | Time data 0 |
|  |  | GMT-based UNIX time from January 1, 1970 |  |
| F2 | $\begin{aligned} & \text { Data format for [F0] } \\ & \text { 0: DEC } \\ & \text { 1: BCD } \end{aligned}$ |  |  |

$: \leftarrow \mathrm{V}$ series (return data)

## Example

The GMT-based UNIX time, 1278663500 seconds, in \$u200 is converted to the calendar data in DEC format, and the converted result is stored in $\$ u 100$ and after. GRE_TO_CLND \$u100 \$u200 0
The calendar data, "8 (hour):18 (minutes):20 (seconds) on Friday on July 9, 2010," is obtained.

Year $\rightarrow$ \$u100 $=2010$ DEC
Month $\rightarrow$ \$u101 = 7 DEC
Day $\rightarrow$ \$u102 = 9 DEC
Hour $\rightarrow$ \$u103 $=8$ DEC
Minutes $\rightarrow$ \$u104 = 18 DEC
Seconds $\rightarrow$ \$u105 $=20$ DEC
Day of the week $\rightarrow$ \$u106 = 5 DEC

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## Restrictions

- This macro handles any year divisible by 4 as a leap year. For example, the year 2100 is recognized as a leap year though it is not so. Therefore, an error of one day will result.
- The calendar data displayable on the V8 unit ranges from January 1, 2006 to December 31, 2105. Any data outside this range cannot be converted with this macro correctly.


## FORMAT_DATA FORMAT_DATA F0 F1 F2

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## Function: Convert string $\rightarrow$ numerical data

This macro is used to convert the string [F1] according to the attributes [F2], and to store the converted result in [FO].


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ | $\bigcirc$ |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :---: | :---: |
| F0 | Target memory: BIN data | The number of words depends on [F2+1] (data length). |
| F1 | Source memory: String (ASCII code) | The number of bytes depends on $[\mathrm{F} 2+3]$ (character count). <br> 32 bytes maximum (16 words) <br> Character processing LSB $\rightarrow$ MSB fixed |
| F2 | 0: DEC without sign (decimal) <br> 1: DEC with a negative sign (decimal) <br> 2: DEC with a positive/negative sign (decimal) <br> 3: HEX (hexadecimal) <br> 4: OCT (octal) <br> 5: BIN (binary) <br> 6: FLOAT (real number) | Format for [F1] <br> If "DEC with a negative sign" or "FLOAT" is selected for [F2] for the conversion of a positive value, add a space code $(20 \mathrm{H})$ to the leftmost position of the positive value. Otherwise, an error will result. <br> A space code is not included in the number of digits. <br> Example: <br> For a string " 123 " to be converted, add a space to make it as " 123 ". |
| F2+1 | 0: 1 word <br> 1: 2 words | Data length for [F0] <br> If "FLOAT" is selected for [F2], specify " 0 ". |
| F2+2 | $\begin{array}{ll} \text { 0: } & \text { DEC } \\ \text { 1: } & \text { BCD } \end{array}$ | Data format for [F0] <br> If "HEX," "OCT," "BIN," or "FLOAT" is selected for [F2], specify "0". |
| F2+3 | $\begin{aligned} & 1-32: \\ & 1-8: \quad[F 2]=0,1,2,5, \text { or } 6 \\ & 1-11: \\ & 1 \text { - } \end{aligned}$ | Number of digits for [F1] <br> A positive/negative sign and a decimal point are not included in the number of digits. <br> Example: <br> For a string " -12.3 " to be converted, the number of digits is three. |
| F2+4 | $\begin{aligned} & 0-10:[F 2]=0,1, \text { or } 2 \\ & 0-31:[F 2]=6 \end{aligned}$ | Decimal place for [F1] <br> Example: <br> For a string "12.34" to be converted, specify two decimal places. |
| F2+5 | 0: With zero suppress <br> 1: Without zero suppress | Format for [F1] |


|  | Value | Remarks |
| :---: | :---: | :---: |
| F2+6 | Valid only when F2+5 = 0 <br> 0 : Leading spaces removed <br> 1: Trailing spaces removed | Format for [F1] <br> When a value in $[F 1]$ includes leading spaces, specify " 0 ". <br> When a value in [F1] includes trailing spaces, specify " 1 " <br> Example: |
| F2+7 | 0 fixed |  |

## Example

The string in \$u100 is converted to the numerical data, and the converted result is stored in \$u300.

- String "1234": DEC without sign


```
$u00100 = '1234` (STRING)
$u00200 = 0 (W) [DEC without sign]
$u00201 = 0 (W) [1 word]
$u00202 = 0 (W) [DEC]
$u00203 = 4 (W) [4 digits]
$u00204 = 0 (W) [Without decimal point]
$u00205 = 0 (W) [With zero suppress]
$u00206 = 0 (W) [Leading spaces removed]
$u00207 = 0 (W) [0 fixed]
FORMAT_DATA $u00300 $u00100 $u00200
```

The result " 1234 " is stored in $\$ u 300$.

- String "12.34": A positive value in DEC with a negative sign format and with two decimal places
$\$ \mathrm{u} 00100$ = ‘ _ 12.34 ' (STRING)
; (For a positive value, add a space code 20 H to the leftmost position.)
$\$ \mathrm{O} 00200=1(\mathrm{~W})$ [DEC with a negative sign]
$\$ \mathrm{u} 00201$ = $0(\mathrm{~W})$ [1 word]
$\$ \mathrm{u} 00202=0(\mathrm{~W})$ [DEC]
$\$ \mathrm{u} 00203=4$ (W) [4 digits]
$\$ u 00204=2(\mathrm{~W})$ [Two decimal places]
$\$ u 00205=0(W)$ [With zero suppress]
$\$ \mathrm{u} 00206=0(\mathrm{~W})$ [Leading spaces removed]
$\$ \mathrm{u} 00207=0(\mathrm{~W})$ [0 fixed]
FORMAT_DATA \$u00300 \$u00100 \$u00200
The result " 1234 " is stored in \$u300.
- String " -12.34 ": A negative value in DEC with a negative sign format and with two decimal places
$\$ \mathrm{O} 00100$ = ‘-12.34’ (STRING)
$\$ \mathrm{u} 00200=1(\mathrm{~W})$ [DEC with a negative sign]
\$u00201 = 0 (W) [1 word]
$\$ \mathrm{O} 00202$ = 0 (W) [DEC]
$\$ \mathrm{u} 00203=4(\mathrm{~W})$ [4 digits]
\$u00204 = 2 (W) [Two decimal places]
$\$ \mathrm{u} 00205=0(\mathrm{~W})$ [With zero suppress]
$\$ u 00206=0(\mathrm{~W})$ [Leading spaces removed]
$\$ \mathrm{u} 00207=0(\mathrm{~W})$ [0 fixed]
FORMAT_DATA \$u00300 \$u00100 \$u00200
The result " -1234 " is stored in $\$ u 300$.
- String "1234": FLOAT
\$u00100 = ' _1234' (STRING)
;(For a positive value, add a space code 20 H to the leftmost position.)
\$u00200 = 6 (W) [FLOAT]
$\$ \mathrm{u} 00201=0(\mathrm{~W})$ [0 fixed]
$\$ \mathrm{u} 00202=0(\mathrm{~W})$ [0 fixed]
\$u00203 = 4 (W) [4 digits]
\$u00204 = 0 (W) [Without decimal point]
$\$ u 00205=0(W)$ [With zero suppress]
$\$ u 00206=0(\mathrm{~W})$ [Leading spaces removed]
\$u00207 = 0 (W) [0 fixed]
FORMAT_DATA \$u00300 \$u00100 \$u00200
The result " 1234 " is stored in \$u300 and \$u301.
- String "001234": DEC without sign format and without zero suppress
$\$ \mathrm{Lu00100}=$ = 001234 ' (STRING)
\$u00200 = 0 (W) [DEC without sign]
\$u00201 = 0 (W) [1 word]
$\$ \mathrm{u} 00202$ = 0 (W) [DEC]
\$u00203 = 6 (W) [6 digits]
\$u00204 = 0 (W) [Without decimal point]
$\$ \mathrm{u} 00205=1$ (W) [Without zero suppress]
$\$ u 00206=0(\mathrm{~W})$ [Leading spaces removed]
$\$ \mathrm{u} 00207$ = 0 (W) [0 fixed]
FORMAT_DATA \$u00300 \$u00100 \$u00200
The result " 1234 " is stored in $\$ u 300$.
- String " $-\quad 1234$ ": DEC without sign format and with two leading spaces
$\$ \mathrm{Lu} 00100$ = ' $-\quad$-1234' (STRING)
$\$ \mathrm{O} 00200=0(\mathrm{~W})$ [DEC without sign]
\$u00201 = 0 (W) [1 word]
$\$ \mathrm{O} 00202$ = 0 (W) [DEC]
$\$ \mathrm{u} 00203$ = $6(\mathrm{~W})$ [6 digits]
\$u00204 = 0 (W) [Without decimal point]
\$u00205 = 0 (W) [With zero suppress]
$\$ \mathrm{u} 00206=0(\mathrm{~W})$ [Leading spaces removed]
$\$ \mathrm{u} 00207$ = 0 (W) [0 fixed]
FORMAT_DATA \$u00300 \$u00100 \$u00200
The result " 1234 " is stored in $\$ u 300$.
- String "1234 $\quad$ "": DEC without sign format and with two trailing spaces $\$ \mathrm{Lu00100}=$ ' 1234 - $\quad$ ' (STRING)
$\$ \mathrm{u} 00200=0(\mathrm{~W})$ [DEC without sign]
\$u00201 = 0 (W) [1 word]
$\$ \mathrm{O} 00202$ = $0(\mathrm{~W})$ [DEC]
$\$ \mathrm{u} 00203=6(\mathrm{~W})$ [6 digits]
\$u00204 = $0(\mathrm{~W})$ [Without decimal point]
\$u00205 = 0 (W) [With zero suppress]
$\$ \mathrm{u} 00206=1(\mathrm{~W})$ [Trailing spaces removed]
$\$ \mathrm{u} 00207=0(\mathrm{~W})$ [0 fixed]
FORMAT_DATA \$u00300 \$u00100 \$u00200
The result " 1234 " is stored in $\$ u 300$.


## Supplemental remarks

- If "HEX" is specified as an attribute for conversion, characters "A" - "F" of the source data is not case-sensitive.
- If this macro, with "FLOAT" specified as an attribute, results in underflow, "0" is obtained as the converted result.
- Conversion with this macro is in the order of LSB $\rightarrow$ MSB.
- The following PLCs provided with PLC-specific data format are capable of handling negative values in BCD with a sign format. When you run this macro using such a value with any of these PLCs, the internal memory is not valid for [F0]. Therefore, be sure to assign the PLC memory (specific to the PLC model) to [FO].
- Fuji Electric: All of the MICREX-F series
- Yaskawa: Memobus [Trans. Mode: Type 1]
- Omron: All [Transmission Mode 2]
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## FORMAT_STR FORMAT_STR F0 F1 F2

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## Function: Convert numerical data $\rightarrow$ string

This macro is used to convert the numerical data [F1] according to the attributes [F2], and to store the converted result in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | ๑ |  |  |  |
| F1 | $\odot$ | $\odot$ |  |  |
| F2 | O |  |  |  |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
Setting range

|  | Value | Remarks |
| :---: | :---: | :---: |
| F0 | Target memory: String (ASCII code) | The number of bytes depends on [F2+3] (character count). <br> 32 bytes maximum (16 words) <br> Character processing LSB $\rightarrow$ MSB fixed |
| F1 | Source memory: BIN data | The number of words depends on [F2+1] (data length). |
| F2 | 0: DEC without sign (decimal) <br> 1: DEC with a negative sign (decimal) <br> 2: DEC with a positive/negative sign (decimal) <br> 3: HEX (hexadecimal) <br> 4: OCT (octal) <br> 5: BIN (binary) <br> 6: FLOAT (real number) | Format for [F1] <br> If "DEC with a negative sign" or "FLOAT" is selected for [F2] and the converted result is a positive value, a space code $(20 \mathrm{H})$ is added to the leftmost position of the positive value. <br> Example: <br> For numerical data " 123 " to be converted, a space is added to provide a converted result as " $\quad 123$ ". |
| F2+1 | 0: 1 word <br> 1: 2 words | Data length for [F1] If "FLOAT" is selected for [F2], specify " 0 ". |
| F2+2 | $\begin{array}{ll} 0: & D E C \\ \text { 1: } & B C D \end{array}$ | Data format for [F1] <br> If "HEX," "OCT," "BIN," or "FLOAT" is selected for [F2], specify "0". |
| F2+3 | $\begin{aligned} & 1-32: \\ & \begin{array}{l} 1-8: \\ 1-11: \end{array} \quad[\mathrm{F} 2]=0,1,2,5, \text { or } 6 \\ & 1-2] \end{aligned}$ | Number of digits for [F0] <br> A positive/negative sign and a decimal point are not included in the number of digits. <br> If the number of digits specified for $[F 2+3]$ is smaller than that of the converted string, the result is given as a hyphen "-". <br> Example: <br> For a string "-12.3" as the converted result, the number of digits is three. |
| F2+4 | $\begin{aligned} & 0-10: \quad[F 2]=0,1, \text { or } 2 \\ & 0-31: \quad[F 2]=6 \end{aligned}$ | Decimal place for [F0] <br> Example: <br> For a string " 12.34 " as the converted result, the number of digits is four and two decimal places are given. |


|  | Value | Remarks |
| :---: | :---: | :---: |
| F2+5 | 0: With zero suppress <br> 1: Without zero suppress | Format for [F0] <br> Select whether to execute zero suppress. <br> Example: <br> For a string "00012" as the converted result, specify " 1 ". |
| F2+6 | Valid only when F2+5 = 0 <br> 0 : Leading spaces added <br> 1: Trailing spaces added | Format for [F0] <br> When inserting leading spaces in the value in [F0], <br> specify " 0 ". When inserting leading spaces in the value <br> in [F0], specify " 1 ". <br> Example: $\begin{aligned} & 0: 12 \rightarrow \_-12 \\ & 1: 12 \rightarrow 12 \_\square \end{aligned}$ |
| F2+7 | 0 fixed |  |

## Example

The numerical data in \$u100 is converted to a string according to the specified attributes, and the converted result is stored in \$u300.

- Numerical data "1234": DEC without sign

| \$u100 |  |  |  |  |  | Display "1234" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1234 |  |  |  |  |  |
|  | $\downarrow$ FORMAT_STR |  |  |  |  |  |
| \$u300 | 3 | 2 | 3 | 1 | HEX | "12" |
| \$u301 | 3 | 4 | 3 | 3 | HEX | "34" |

$\$ \mathrm{u} 00100=1234$ (W)
$\$ \mathrm{u} 00200=0(\mathrm{~W})$ [DEC without sign]
$\$ \mathrm{u} 00201=0(\mathrm{~W})$ [1 word]
$\$ \mathrm{u} 00202=0(\mathrm{~W})$ [DEC]
$\$ \mathrm{u} 00203=4(\mathrm{~W})$ [4 digits]
$\$ \mathrm{l} 00204=0(\mathrm{~W})$ [Without decimal point]
$\$ \mathrm{u} 00205=0(\mathrm{~W})$ [With zero suppress]
$\$ u 00206=0(\mathrm{~W})$ [Leading spaces added]
$\$ \mathrm{u} 00207$ = 0 (W) [0 fixed]
FORMAT_STR \$u00300 \$u00100 \$u00200
The result " 1234 " is stored in $\$ u 300$ and $\$ u 301$.

- Numerical data " 1234 ": DEC without sign format and with zero suppress and leading spaces
$\$ \mathrm{u} 00100=1234(\mathrm{~W})$
$\$ \mathrm{u} 00200=0(\mathrm{~W})$ [DEC without sign]
$\$ \mathrm{u} 00201=0(\mathrm{~W})$ [1 word]
$\$ \mathrm{O} 00202$ = $0(\mathrm{~W})$ [DEC]
$\$ \mathrm{u} 00203=6(\mathrm{~W})$ [6 digits]
$\$ \mathrm{u} 00204=0(\mathrm{~W})$ [Without decimal point]
$\$ u 00205=0(W)$ [With zero suppress]
$\$ u 00206=0(\mathrm{~W})$ [Leading spaces added]
$\$ \mathrm{u} 00207=0(\mathrm{~W})$ [0 fixed]
FORMAT_STR \$u00300 \$u00100 \$u00200
The result "உ■1234" is stored in \$u300 to \$u302.
- Numerical data " 1234 ": DEC without sign format and with zero suppress and trailing spaces
$\$ u 00100=1234(\mathrm{~W})$
$\$ \mathrm{u} 00200=0(\mathrm{~W})$ [DEC without sign]
\$u00201 = 0 (W) [1 word]
$\$ \mathrm{O} 00202$ = 0 (W) [DEC]
$\$ \mathrm{u} 00203=6(\mathrm{~W})$ [6 digits]
\$u00204 = 0 (W) [Without decimal point]
$\$ \mathrm{u} 00205=0(\mathrm{~W})$ [With zero suppress]
\$u00206 = 1 (W) [Trailing spaces added]
$\$ u 00207=0(\mathrm{~W})$ [0 fixed]
FORMAT_STR \$u00300 \$u00100 \$u00200
The result "1234_" is stored in \$u300 to \$u302.
- Numerical data "1234": DEC without sign format and without zero suppress
$\$ u 00100=1234$ (W)
$\$ \mathrm{u} 00200=0(\mathrm{~W})$ [DEC without sign]
\$u00201 = 0 (W) [1 word]
$\$ \mathrm{O} 00202$ = 0 (W) [DEC]
$\$ \mathrm{O} 00203=6(\mathrm{~W})$ [6 digits]
\$u00204 $=0(\mathrm{~W})$ [Without decimal point]
\$u00205 = 1 (W) [Without zero suppress]
$\$ \mathrm{u} 00206=0(\mathrm{~W})$ [Leading spaces added]
\$u00207 = 0 (W) [0 fixed]
FORMAT_STR \$u00300 \$u00100 \$u00200
The result "001234" is stored in \$u300 to \$u302.
- Numerical data " 12.34 ": DEC with a negative sign format and with two decimal places
$\$ \mathrm{u} 00100=1234(\mathrm{~W})$
$\$ \mathrm{u} 00200=1(\mathrm{~W})$ [DEC with a negative sign]
\$u00201 = 0 (W) [1 word]
\$u00202 = 0 (W) [DEC]
$\$ \mathrm{u} 00203$ = 4 (W) [4 digits]
\$u00204 = 2 (W) [Two decimal places]
$\$ \mathrm{l} 00205=0(\mathrm{~W})$ [With zero suppress]
$\$ u 00206=0(\mathrm{~W})$ [Leading spaces added]
\$u00207 = 0 (W) [0 fixed]
FORMAT_STR \$u00300 \$u00100 \$u00200
The result " $\llcorner 12.34$ " is stored in \$u300 to \$u302.
(For a positive value, a space code 20 H is added to the leftmost position.)
- Numerical data "1234.00": FLOAT
$\$ \mathrm{O} 00100=1234$ (D)
\$u00100(F) <- \$u00100(D) 0 (D)
$\$ \mathrm{~L} 00200=6(\mathrm{~W})$ [FLOAT]
$\$ \mathrm{u} 00201$ = 0 (W) [0 fixed]
$\$ \mathrm{u} 00202$ = $0(\mathrm{~W})$ [0 fixed]
$\$ u 00203=6(\mathrm{~W})$ [6 digits]
\$u00204 = 2 (W) [Two decimal places]
$\$ u 00205=0(W)$ [With zero suppress]
\$u00206 = 0 (W) [Leading spaces added]
\$u00207 = 0 (W) [0 fixed]
FORMAT_STR \$u00300 \$u00100 \$u00200
The result " $\_1234.00$ " is stored in \$u300 to \$u303.
(For a positive value, a space code 20 H is added to the leftmost position.)


## Supplemental remarks

- Conversion with this macro is in the order of LSB $\rightarrow$ MSB.
- A NULL code is added to the end of the string as a result of conversion. Even-number-byte string thereby uses one extra word.
- The following PLCs provided with PLC-specific data format are capable of handling negative values in BCD with a sign format. When you run this macro using such a value with any of these PLCs, the internal memory is not valid for [F1]. Therefore, be sure to assign the PLC memory (specific to the PLC model) to [F1].
- Fuji Electric: All of the MICREX-F series
- Yaskawa: Memobus [Trans. Mode: Type 1]
- Omron: All [Transmission Mode 2]
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.8 Transfer

| MOV | F0 = F1 (W) | ORRD |
| :---: | :---: | :---: |
|  | F0 = F1 (D). | DWORD |

All models $\quad \bigcirc$

## Function: Transfer

This macro command is used to transfer the data in memory at the address specified in [F1] to the address in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF | $00000000-$ FFFFFFFF <br> (HEX) |
| F1 | HEX) | $($ HEX |

## Example

$$
\begin{aligned}
& \text { - \$u100 = PLC1 [D200] (W) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MOV }
\end{aligned}
$$

- \$u100 = PLC1 [D200] (D)



## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## BMOV

$$
\begin{aligned}
& \text { F0 }=\text { F1 C : F2 (BMOV)(W) . . . . . . . . . . . . . . . . . . . . . . . . . . WORD } \\
& \text { F0 }=\text { F1 C : }: \text {. } 2 \text { (BMOV)(D) . . . . . . . . . . . . . }
\end{aligned}
$$

## Function: Block transfer

This macro command is used to transfer the data at the location starting from the address specified in [F1] in a block to the top address in [F0]. The data count is specified in [F2].
WORD


DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> $(H E X)$ | $00000000-$ FFFFFFFF <br> $(H E X)$ |
| F1 | $0-4096$ | $0-4096$ |
| F2 |  |  |

## Example

- \$u100 = PLC1 [D200] C : 3 (BMOV) (W)

| D200 | 2222 | HEX |  | \$u100 | 2222 | HEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D201 | 1111 | HEX | BMOV | \$u101 | 1111 | HEX |
| D202 | 4444 | HEX |  | \$u102 | 4444 | EX |

- PLC2 [1:\#C100] = \$u100 C : 4 (BMOV) (D) or PLC2 [1:\#C100] = \$u100 C : 3 (BMOV) (D)

| \$u100 | 2222 | $\begin{aligned} & \text { HEX } \\ & \text { HEX } \end{aligned}$ | $\longrightarrow$ | 1:\#C100 | 11112222 | HEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u101 | 1111 |  | BMOV |  |  |  |
| \$u102 | 5555 | HEX |  | 1:\#C101 | 77775555 | HEX |
| \$u103 | 7777 | HEX |  |  |  |  |
|  | ternal m | ory |  |  | ble-word me |  |

- $\$ \mathrm{l} 100=$ PLC2 [1:\#C100] C : 4 (BMOV) (D) or $\$ \mathrm{~L} 100$ = PLC2 [1:\#C100] C : 3 (BMOV) (D)

| 1:\#C100 | 11112222 | HEX | $\overrightarrow{\mathrm{BMOV}}$ | \$u100 | 2222 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \$u101 | 1111 |
| 1:\#C101 | 77775555 | HEX |  | \$u102 | 5555 |
|  |  |  |  | \$u103 | 7777 |

## Supplemental remarks

- If [ $\square$ Permit Double-Word Transfer by BMOV] is not checked on the [General Settings] tab window ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [General Settings]), DWORD cannot be selected.
If BMOV in double-word memory is executed though the option is not checked, the following results:

PLC2 [1:\#C100] = \$u100 C : 4 (BMOV)

| \$u100 | 2222 | HEX |  | 1:\#C100 | 00002222 | HEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u101 | 1111 | HEX | BMOV | 1:\#C101 | 00001111 | HEX |
| \$u102 | 5555 | HEX |  | 1:\#C102 | 00005555 | HEX |
| \$u103 | 7777 | HEX |  | 1:\#C103 | 00007777 | HEX |

\$u100 = PLC2 [1:\#C100] C : 4 (BMOV)

| 1:\#C100 | 11112222 | $\left\{\begin{array}{l} \mathrm{HEX} \\ \mathrm{HEX} \end{array}\right.$ | $\overrightarrow{\mathrm{BMOV}}$ | \$u100 | 2222 | HEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1:\#C101 | 77775555 |  |  | \$u101 | 5555 | HEX |
| 1:\#C102 | 88884444 | HEX |  | \$u102 | 4444 | HEX |
| 1:\#C103 | 99993333 | HEX |  | \$u103 | 3333 | HEX |

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## CVMOV

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

$$
\begin{aligned}
& \text { F0 }=\text { F1 C : F2 (CVMOV)(W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \\
& \text { F0 }=\text { F1 C : F2 (CVMOVDD }
\end{aligned}
$$

## Function: Block transfer

This macro command is used to transfer the data at the location starting from the address specified in [F1] in a block to the top address in [F0]. The data count is specified in [F2]. Depending on the PLC models, data conversion takes place at the same time.

| WORD |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | F1 |  | F0 |
| 2 | F1+1 |  | F0+1 |
| 3 | F1+2 |  | F0+2 |
| : | : |  | : |
| F2 | F1+(F2-1) |  | F0+(F2-1) |

DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> (HEX) | $00000000-$ FFFFFFFF <br> (HEX) |
| F1 | $0-4096$ | $0-4096$ |
| F2 |  |  |

## Example

Refer to the operation example applicable to your PLC model. If any PLC other than listed blow is in use, the operation identical to the BMOV command takes place.

| Device selection (PLC) |  | Remarks | Operation |
| :---: | :---: | :---: | :---: |
| Fuji Electric | MICREX-F Series |  | 2 |
|  | MICREX-F series T-link |  |  |
| Hitachi | HIDIC-S10/2 $\alpha$, S10mini |  | 1 |
|  | HIDIC-S10/2 $\alpha$, S10mini (Ethernet) |  |  |
|  | HIDIC-S10/4 $\alpha$ |  |  |
|  | HIDIC-S10/ABS* |  |  |
|  | HIDIC-S10 (OPCN-1)* |  |  |
|  | HIDIC-S10V |  |  |
|  | HIDIC-S10V (Ethernet) |  |  |
| OMRON | All models | [Transmission Mode: Transmission Mode 2] in the [Communication Setting] tab window | 2 |
| Siemens | S5* |  | 1 |
|  | S5 PG Port* |  |  |
|  | S7 |  |  |
|  | S7-300/400MPI |  |  |
|  | S7-300MPI (V-MPI)* |  |  |
|  | S7-300MPI (HMI ADP)* |  |  |
|  | S7-300MPI (PC ADP)* |  |  |
|  | S7-300MPI (Helmholz SSW7 ADP)* |  |  |
|  | S7 PROFIBUS-DP |  |  |
|  | TI500/505 |  |  |
| Yaskawa | Memobus | [Transmission Mode: Type 1] in the [Communication Setting] tab window | 2 |
| Universal PROFIBUS-DP |  | [Transmission Mode: Big | 1 |
| Universal DeviceNet* |  | [Communication Setting] tab window |  |


| Device selection <br> (temperature controller / servo / inverter) |  | Remarks | Operation |
| :---: | :--- | :---: | :---: |
| IAI | PCON/ACON/SCON(MODBUS RTU) |  | 1 |
| Yaskawa | E-POSI series ${ }^{*}$ |  | 1 |

* Incompatible with the V8
- Operation 1: With Hitachi's PLC selected as PLC1
- \$u100 = PLC1 [FW0064] C : 3 (CVMOV) (W)

| FW64 | 2222 | HEX |  | \$u100 | 2222 | HEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FW65 | 1111 | HEX | cVmov | \$u101 | 1111 | HEX |
| FW66 | 4444 | HEX |  | \$u102 | 4444 | HEX |

In the case of WORD, the operation identical to BMOV takes place.

- \$u100 = PLC1 [FW0064] C : 3 (CVMOV) (D) or \$u100 = PLC1 [FW0064] C : 4 (CVMOV) (D)


In the case of DWORD, a swap between the higher-order word and the lower-order word takes place.

- Operation 2: With Fuji's PLC selected as PLC2
- \$u100 =PLC2 [WM100] C : 3 (CVMOV) (W)


PLC-format data (BCD with signs) converted to binary data is stored.

- PLC2 [BD100] = \$u100 C : 2 (CVMOV) (D)


Binary data converted to PLC-format data (BCD with signs) is stored.

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

CVSMOV

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |



## Function: Block transfer with text process conversion

This macro command is used to transmit the data at the location starting from the address specified in [F1] in a block to the top address in [F0]. The data count is specified in [F2]. In transfer from the internal memory to the PLCn memory, from the PLCn memory to the internal memory, or from PLCm memory to the PLCn memory, text conversion is executed at the same time.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :---: | :---: |
| F0 | Text | 102 bytes maximum <br> (Varies depending on the bytes of <br> the text) |
| F0+1 | Text | 102 bytes maximum <br> (Varies depending on the bytes of <br> the text) |
| $:$ |  | 100 bytes maximum |
| F1 | $0-100$ |  |
| F1+1 |  |  |
| $:$ |  |  |
| F2 |  |  |

## Example

- When the [Communication Setting] $\rightarrow$ [Text Process] setting for the PLC that is the transfer destination (PLC3) is [MSB $\rightarrow$ LSB]:
- PLC3 [D100] = \$u100 C : 8 (CVSMOV) (W)

| \$u100 | 7 | 4 | 7 | 3 | HEX | ts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$u101 | 6 | 9 | 7 | 2 | HEX | ir |
| \$u102 | 6 | 7 | 6 | E | HEX | gn |
| \$u103 | 0 | 0 | 0 | 0 | HEX | Null code |
| $\downarrow$ CVSMOV |  |  |  |  |  |  |
| D100 | 7 | 3 | 7 | 4 | HEX | ts |
| D101 | 7 | 2 | 6 | 9 | HEX | ir |
| D102 | 6 | E | 6 | 7 | HEX | gn |
| D103 | 0 | 0 | 0 | 0 | HEX | Null code |

## Supplemental remarks

- A null code is added to the end. Even-number-byte text thereby uses one extra word.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## FILL

All models

F0 = F1 C : F2 (FILL)

## Function: Transfer all

This macro command is used to write the data specified in [F1] to the words starting from the address in [F0]. The number of the words is specified in [F2].


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $๑^{\star 1}$ |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | O |  |  | $\bigcirc$ |

: Setting enabled (indirect designation disabled)
( ) : Setting enabled (indirect designation enabled)
*1 Available only with the V8 series/TELLUS3 HMI

## Setting range

|  | WORD |
| :---: | :---: |
| F0 | $0000-$ FFFF <br> (HEX) |
| F1 | $0-4096$ |
| F2 |  |

## Example

- \$u100 = \$u200 C : 3 (FILL)



## Supplemental remarks

- When "PLC memory" is specified for [F0] with the V8 series, code conversion is not performed.
- For the V8 series, the result of macro execution is stored in \$s1057. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

### 4.9 Comparison

CMP

All models

IF (F0 condition F1) LB F2 (W) . . . . . . . . . . . . . . . . . . . WORD
IF (F0 condition F1) LB F2 (D) . . . . . . . . . . . . . . . . . . . DWORD

## Function: Comparison

This macro command is used to compare the data with signs specified in [F0] and [F1] and to execute a jump to the label in [F2] if the comparison satisfies the condition.

## Conditions

| Symbol | Contents |
| :---: | :---: |
| $==$ | Equal |
| $!=$ | Different |
| $<$ | Less than |
| $>$ | Greater than |
| $<=$ | Less than or equal to |
| $>=$ | Greater than or equal to |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  | $\bigcirc$ |
| F1 | 〇 |  |  | $\bigcirc$ |
| F2 |  |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> $(H E X)$ | $00000000-$ FFFFFFFFF <br> $(H E X)$ |
| F1 | $0-127$ | $0-127$ |
| F2 |  |  |

## Example

- IF (\$u100 == 500) LB 0 (W)

RET
LBO

If $\$ u 100=500$, a jump to LB0 (label 0 ) takes place and then macro execution proceeds to the next line.
If $\$ u 100 \neq 500$, macro execution proceeds to the next line. In this example, RET terminates the macro.

## Supplemental remarks

- A label (LB) must be specified as the jump target. If no label exists, error 83 (there is no destination label for the jump) will be detected by error check on MONITOUCH.
- For the V8 series, the result of macro execution is stored in \$s1058. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

TST

IF condition (F0 \& F1) LB F2 (W)
WORD
IF condition (F0 \& F1) LB F2 (D). . . . . . . . . . . . . . . . . DWORD

## Function: Comparison with 0

This macro command is used to compare the result of [F0] ANDed with [F1] with "0", and to execute a jump to the label specified in [F2] if the comparison satisfies the condition.

## Conditions

| Conditions | Contents |
| :---: | :---: |
| ZERO | 0 |
| NON ZERO | Other than 0 |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  | $\bigcirc$ |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 |  |  |  | $\bigcirc$ |

: Setting enabled (indirect designation disabled)
〇: Setting enabled (indirect designation enabled)
Setting range

|  | WORD | DWORD |
| :---: | :---: | :---: |
| F0 | $0000-$ FFFF <br> $(H E X)$ | $00000000-$ FFFFFFFF <br> (HEX) |
| F1 | $0-127$ | $0-127$ |
| F2 |  |  |

## Example

- IFNZ (\$u100 \& 8000H) LB0 (W)

RET
LB0

If bit 15 at $\$ u 100$ is set (ON), a jump to LB0 (label 0) takes place and then macro execution proceeds to the next line.
If bit 15 at $\$ u 100$ is reset (OFF), macro execution proceeds to the next line. In this example, RET terminates the macro.

## Supplemental remarks

- A label (LB) must be specified as the jump target. If no label exists, error 83 (there is no destination label for the jump) will be detected by error check on MONITOUCH.
- For the V8 series, the result of macro execution is stored in \$s1058. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |


| IF |  | IF (F0 (condition 1) F1) (W) . . . . . . . . . . . . . . . . . . . . WORD |  |
| :---: | :---: | :---: | :---: |
| ELSE |  | IF (F0 (condition 1) F1) (D). . . . . . . . . . . . . . . . . . . . . . ${ }^{\text {dWWRD }}$ |  |
| ENDIF |  | IF (condition 2) (F0) (B) . . . . . . . . . . . . . . . . . . . . . . . . . . BIT |  |
| All V8 models | $\bigcirc$ | (1) |  |
| All V7 models |  | ELSE |  |
| All V6 models |  | (2) |  |
| TELLUS3 HMI | $\bigcirc$ | ENDIF |  |
| TELLUS2 HMI |  |  |  |

## Function: Conditional branch

The above-mentioned macro commands for data in WORD and DWORD formats are used to compare [F0] and [F1], and to execute processing (1) if true, or (2) if false.
The macro command for data in BIT format is used to compare [FO] and condition 2, and to execute processing (1) if true, or (2) if false.
Processing of "ELSE" and (2) can be omitted.

Conditions 1

| Symbol | Contents |
| :---: | :---: |
| $==$ | Equal |
| $!=$ | Different |
| $<$ | Less than |
| $>$ | Greater than |
| $<=$ | Less than or equal to |
| $>=$ | Greater than or equal to |

Conditions 2

| Symbol | Contents |
| :---: | :---: |
| ZERO | 0 |
| NON ZERO | Other than 0 |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| F1 | $\bigcirc$ | $\odot$ | $\odot$ | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | WORD | DWORD | BIT |
| :---: | :---: | :---: | :---: |
| F0 | $-32768-+32767$ | $-2147483648-+2147483647$ | 0,1 |
| F1 | (Decimal system with signs) | (Decimal system with signs) | - |

## Example

- Comparison of data in WORD format

IF (\$u100 < 10) (W)
$\$ \mathrm{u} 100=\$ \mathrm{u} 100+1$ (W)
ELSE
$\$ \mathrm{~L} 100=0(\mathrm{~W})$
ENDIF
" $\$ \mathrm{u} 100=\$ \mathrm{u} 100+1$ " is executed when $\$ \mathrm{l} 100$ is smaller than 10. When \$u100 is 10 or more, " $\$ u 100=0$ " is executed.

- Comparison of data in BIT format IFNZ (\$u100-00) (B) $\$ \mathrm{u} 100=\$ \mathrm{u} 100+1$ (W) ELSE $\$ \mathrm{u} 100=0(\mathrm{~W})$ ENDIF If $\$ \mathrm{u} 100-00$ is $\mathrm{ON}, \$ \mathrm{u} 100=\$ \mathrm{u} 100+1$ is executed. If $\$ u 100-00$ is OFF, $\$ \mathrm{~L} 100=0$ is executed.


## Restrictions

IF-ELSE-ENDIF commands can be nested up to 8 levels.

## Supplemental remarks

- An error occurs to the macro editor when any of the following conditions is met.

1. When IF-ELSE-ENDIF commands are nested beyond 8 levels;

$$
\begin{array}{ll}
\text { Ex.: } & \text { IF }(\$ \mathrm{Lu} 100>0) \\
& \text { IF }(\$ \mathrm{Lu} 100<10) \\
& : \\
& \text { IF }(\$ \mathrm{Su} 200==1) \\
& \text { ENDIF }
\end{array}
$$

2. When the number of IF commands is not the same as the one of ENDIF commands;
Ex.: IF \(\left.(\$ \mathrm{u} 100==0) \quad \begin{array}{l}There are two IF commands while <br>

IF(\$ \mathrm{u} 100==0)\end{array}\right) \times\)| there is one ENDIF command. |
| :--- |

ENDIF
3. When the number of IF commands is not the same as the one of ELSE commands;
Ex.: IF (\$u100 == 0)
ELSE $\quad$ There is one IF command while there
ELSE $\times$ are two ELSE commands.
ENDIF
4. When FOR and NEXT commands are specified in a series of IF-ELSEENDIF commands.

$$
\left.\begin{array}{ll}
\text { Ex.: } & \text { IF }(\$ \mathrm{Qu} 100==0) \\
& \text { FOR } 10 \\
& \text { ELSE } \\
& \text { ENDIF } \\
& \text { NEXT }
\end{array}\right) \times \begin{aligned}
& \text { Only ELSE and ENDIF commands are } \\
& \text { specified between FOR and NEXT } \\
& \text { commands. }
\end{aligned}
$$

- The result of macro execution is stored in \$s1059.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error* |

* When reading from [F0] and [F1] ends in failure, an error occurs and " -1 " is stored in \$s1059.
When an execution error occurs, it is regarded as a fault.


### 4.10 Macro Operation Control

## CALL

All models $\bigcirc$

## CALL FO

## Function: Macro block number designation

This macro command is used to execute the macro block specified in [F0].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $0-1023$ |

## Example

- CALL 5



## Supplemental remarks

- If the macro block number called by CALL is not registered, an error check triggers a warning.
- The macro command can be nested up to 8 levels.

Ex.) 2 levels


- For the V8 series, the result of macro execution is stored in \$s1059. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Error <br> (nesting of 9 or more levels / number of executed macro lines of <br> 16001 or greater, etc.) |

JMP

All models

JMP LB FO

## Function: Unconditional jump

This macro command is used to execute a jump to the label specified in [FO].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 |  |  |  | ○ |

O: Setting enabled (indirect designation disabled)
๑: Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $0-127$ |

## Example

- JMP LB5



## Supplemental remarks

- A label (LB) must be specified as the jump target. If no label exists, error 83 (there is no destination label for the jump) will be detected by error check on MONITOUCH.
- For the V8 series, the result of macro execution is stored in \$s1059. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Error (number of executed macro lines of 16001 or greater, etc.) |

## LABEL

All models

## LB F0:

## Function: Label number

This macro command is used to create jump target labels for CMP, TST, and JMP.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 |  |  |  | ○ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $0-127$ |

## Supplemental remarks

- A label (LB) must be specified as the jump target. If no label exists, error 83 (there is no destination label for the jump) will be detected by error check on MONITOUCH.
- For the V8 series, the result of macro execution is stored in \$s1059. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Error (number of executed macro lines of 16001 or greater, etc.) |

## FOR/NEXT

All models

FOR F0

## NEXT

## Function: FOR - NEXT

This macro command is used to execute a loop between FOR and NEXT the number of times specified in [F0].

```
FOR F0
    $u300 = $u300+5 }\leftarrow\mathrm{ The loop executes the number
NEXT of times specified in FO.
```


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $0-65535$ |

## Example

```
$u300 = 0 (W)
$u301 = 0 (W)
FOR 3
        $u300 = $u300 + 1 (W)
        FOR $u400 I If $u400 = 5, The loop is
        $u301 = $u301 + 5 (W)
            NEXT
NEXT
- Result
    $u300 = 3
    $u301 = 75
```


## Supplemental remarks

- Loop between FOR and NEXT can be nested* up to 8 levels. Nesting beyond 8 levels triggers error 81 (macro: FOR-NEXT command number is wrong) as a result of error check on MONITOUCH.
* Nesting means incorporating a FOR-NEXT loop into a loop of the same kind.

- For the V8 series, the result of macro execution is stored in \$s1059. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Error <br> (nesting of 9 or more levels / number of executed macro lines of <br> 16001 or greater, etc.) |

RET

All models 0

## RET

## Function: Macro finish

This macro command is used to finish a macro. Any lines after RET are not executed.

$$
\begin{array}{ll}
\text { \$u300 = } 1(\mathrm{~W}) & \leftarrow \text { Execute } \\
\text { \$u301 = 10 }(\mathrm{W}) & \leftarrow \text { Execute } \\
\text { RET } & \leftarrow \text { Finish } \\
\text { \$u302 }=100(\mathrm{~W}) & \leftarrow \text { Not executed } \\
\text { \$u303 }=1000(\mathrm{~W}) & \leftarrow \text { Not executed }
\end{array}
$$

## Supplemental remarks

- In the case of a macro block called by CALL, RET executes a return to the original sequence.



## SWRET

## SWRET

## Function: Execute switch function

This macro command is used in a switch ON macro.

- With SWRET: Processing takes place in the order of the interruption of the macro, the execution of the switch function, and the execution of the remaining program of the macro.

- Without SWRET:

Processing takes place in the order of the execution of the switch ON macro and the execution of the switch function.


## Example

- In a case where a macro runs based on the result written by the ENT key (in the entry mode) to the entry target D200, executing the switch function (for writing) by SWRET is required.



## Supplemental remarks

- The macro command is valid in switch ON macros.

The command, however, is not executed normally in the following cases:

- SWRET exists in a macro block called by CALL.
- JMP or FOR-NEXT triggers a movement to a label before the execution of SWRET.

ON Macro


WAIT

| V4 | O |
| :--- | :--- |

WAIT

## Function:

If a switch having the write function is used for writing to the internal memory and if this switch's ON macro uses the data written to the internal memory, macro execution is caused to pause until the end of writing is notified.
Macro execution proceeds to the next command when the completion of writing is notified.

## Example

- With WAIT

In accordance with WAIT, macro execution pauses, waiting for the notification of writing completion from the PLC.


- Without WAIT:

Macro execution proceeds to the next command without waiting for the notification of writing completion from the PLC.


## Supplemental remarks

- The macro command is used combined with SWRET in a switch ON macro.
EN_INT

| All V8 models | ○ |
| :--- | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## EN_INT

## Function: Enabling interruption of switch processing

If a switch on the $V$ series unit is pressed during the execution of macro processing, the switch processing is not executed immediately but is delayed until completion of the macro sheet.

| Execute |  |
| :---: | :---: |
| : | $\sqrt{\text { Switch ON }}$ |
| \$u00000 = PLC1 [D00000] (W) |  |
| \$u00001 = PLC2 [DM00000] (W) | , |
| \$u00002 = \$u00000 + \$u00001 (W) | I (Switch processing is delayed.) |
| : |  |
| : | , |
| : | 1 |
| (End of macro sheet) |  |
|  | Execution of switch processing |

When this command is executed while switch processing is pending, macro processing is suspended while the switch processing is executed. On completion of the switch processing macro execution is continued from the point of suspension.


## Supplemental remarks

- If there is no switch processing pending, nothing happens in response to this command.


### 4.11 FROM Backup

FROM_WR

All models

In the FP-ROM (flash memory) for the V series screen data, its empty area can be used to back up the PLC memory, internal memory, and memory card. A maximum of 16 k words can be allocated to the backup area.

## FROM_WR F0 F1

## Function: Write to FROM

This macro command is used to write the data of words starting from the address specified in [F0] to the FP-ROM. The number of the words is specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 |  |  |  | $\bigcirc$ |

○: Setting enabled (indirect designation disabled)
( ) : Setting enabled (indirect designation enabled)

## Setting range

|  |  | Value |
| :--- | :--- | :--- |
| F0 | Address in each device |  |
| F1 | $1-16384$ (= 16k words) |  |

## Supplemental remarks

- When using the macro command, go to the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [General Settings]). On the window, check [ $\square$ Use Internal Flash ROM as Back-up Area].
* Checking this option reduces the available screen data capacity by 128 kbytes.
- Each FP-ROM allows 100,000 write operations.
(Each execution of FROM_WR is counted as one time, regardless of the number of words.) It is thereby recommended that backup data be read after power-on and be written before power-off.
- Do not execute FROM_WR in every cycle using a CYCLE macro, etc.
- Writing to FP-ROM takes three to five seconds.
- The result of macro execution is stored in \$s728.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## FROM_RD <br> FROM_RD F0 F1

## Function: Read from FROM

This macro command is used to read the data of words from the FP-ROM into the address specified in [F0]. The number of the words is specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 |  |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | Address in each device |
| F1 | $1-16384$ (= 16k words) |

## Supplemental remarks

- When using the macro command, go to the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [General Settings]). On the window, check [ $\square$ Use Internal Flash ROM as Back-up Area].
* Checking this option reduces the available screen data capacity by 128 kbytes.
- Do not execute FROM_RD in every cycle using a CYCLE macro, etc.
- The result of macro execution is stored in $\$ \mathrm{~s} 728$.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.12 Printer

MR_OUT

| All V8 models | O |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

The following macro commands are used to send commands to the printer connected with the V series:

## MR_OUT FO

## Function: Execution of MR400 format table call setting number

This macro command is used to print the data in the format table (call setting number) specified in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :---: |
| F0 | 1-128: Format table (call setting) number |

## Example

- MR_OUT 50

The above program prints the contents of the MR400 format table (call setting) No. 50.


## Supplemental remarks

- The macro command is valid when "MR-400" is selected for [Type] in the [Printer] dialog ([System Setting] $\rightarrow$ [Device Connection Setting] $\rightarrow$ [Others] $\rightarrow$ [Printer]).
- For the V8 series, the result of macro execution is stored in \$s1060. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

MR_REG

| All V8 models | O |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## MR_REG FO

## Function: Execution of the MR400 format table registration setting number

This macro command is used to write the data in the format table (registration setting number) specified in [F0] to the memory card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ | $\odot$ | $\odot$ | $\bigcirc$ |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | $1-128:$ Format table (registration setting) number |

## Example

- MR_REG 22


The memory card can be formatted.

- MR_REG 1


First: Format is registered given registration No. 1 in the MR400 memory card.
Second: The format of registration No. 1 is printed out so that it can be viewed for check.


## Supplemental remarks

- The macro command is valid when "MR-400" is selected for [Type] in the [Printer] dialog ([System Setting] $\rightarrow$ [Device Connection Setting] $\rightarrow$ [Others] $\rightarrow$ [Printer]).
- For the V8 series, the result of macro execution is stored in \$s1060. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## OUT_PR

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

OUT_PR F0 F1

## Function: Command output to printer

This macro command is used to send [F1]-specified bytes of data from the address in [F0] to the printer.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | Command for each printer |
| F0+1 |  |
| : |  |
| F0+(F1/2-1) |  |
| F1 | 1-255: Number of bytes |

## Example

- Paper feed and auto cut are performed on the CBM (293) printer.

From the command table in the CBM printer manual:
Print and pitch paper feed: 1BH4AHn (paper feed $\mathrm{n} / 360 \mathrm{in}$.)
Auto cutter drive partial cut: 1BH6DH
Code to be sent to the printer: 1BH 4AH 96H 1BH 6DH

$$
\text { n = } 150
$$

Macro

$$
\left.\begin{array}{l}
\$ \mathrm{\$ u} 100=4 \mathrm{~A} 1 \mathrm{BH} \\
\$ \mathrm{Lu} 101=1 \mathrm{~B} 96 \mathrm{H} \\
\$ \mathrm{u} 102=006 \mathrm{DH} \\
\text { OUT_PR \$u100 } 5
\end{array}\right\} \text { Set in the little endian* system. }
$$

## Supplemental remarks

- Little endian:

Two-byte or more data is divided in units of one byte at the time of transfer. This divided data is recorded or transmitted from the least significant byte.
Little endian Big endian

| 31 | 1615 |  | 0 | 31 | 1615 |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Byte 3 | Byte 2 | Byte 1 | Byte 0 | Byte 0 | Byte 1 | Byte 2 | Byte 3 |

- Available command varies depending on the printer model. The V series does not check the validity of the command before transmitting the command. Refer to the instruction manual for the printer and set the command correctly.
- For the V8 series, the result of macro execution is stored in \$s1060. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.13 Video

| V815X | $\bigcirc$ |
| :---: | :---: |
| V812S | $\bigcirc$ |
| V810S | $\bigcirc$ |
| V810T | $\bigcirc$ |
| V810C |  |
| V808S | $\bigcirc$ |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | $\bigcirc$ |
| V712S | $\bigcirc$ |
| V710S | $\bigcirc$ |
| V710T | $\bigcirc$ |
| V710C |  |
| V708S | $\bigcirc$ |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T | $\bigcirc$ |
| V612C |  |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## Video <br> Video MEMORY F1 <br> Memory designation

## Function 1: Size

This macro command is used to change the video display to the size specified in [F1+1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | MEMORY |
| F1 | $0:$ Size |
| F1+1 | $0: 160 \times 120$ |
|  | $1: 320 \times 240$ |
|  | 2: $640 \times 480$ |
|  | $3: 640 \times 240$ |

## Example

- \$u100 = 0 (W) [Size]
$\$ \mathrm{~L} 101=0(\mathrm{~W}) \quad[160 \times 120]$
Video MEMORY \$u100


The above program changes the video display size to $160 \times 120$.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 2: Size (dot)

This macro command is used to change the video display to the size specified in [F1+1] and [F1+2] (dot units).

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 7: Size (dot) |
| F1+1 | $1: \quad$ Width |
|  | $800:$ |
| F1+2 | $1: \quad$ Height |
|  | $600:$ |

## Example

- \$u100 = 7 (W) [Size (dot)]
\$u101 = 100 (W) [Width 100]
\$u101 = 75 (W) [Height 75]
Video MEMORY \$u100

The above program changes the video display size to $100 \times 75$.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected for [Multimedia] on the V8 series.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 3: Channel

This macro command is used to change the video display to the channel specified in [F1+1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | MEMORY |
| F1 | 1: Channel |
| F1+1 | $1: 1 \mathrm{CH}$ |
|  | 2: 2 CH |
|  | $3: 3 \mathrm{CH}$ |
|  | $4: 4 \mathrm{CH}$ |

## Example

$$
\begin{array}{rll}
\text { - \$u100 }=1(\mathrm{~W}) & & {[\text { Channel }]} \\
\$ \mathrm{su} 101=2(\mathrm{~W}) & & {[2 \mathrm{CH}]}
\end{array}
$$

Video MEMORY \$u100


The above program changes the video display to channel 2.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected for [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 4: Dithering

This macro command is used to switch on/off the dithering of video display.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | MEMORY |
| F1 | 2: Dithering |
| F1+1 | 0: OFF |
|  | 1: ON |

## Example

- \$u100 = 2 (W) [Dithering]
\$u101 = 0 (W) [OFF]
Video MEMORY \$u100
The above program switches the dithering of video display to OFF.


## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- This function is invalid with the V8 series and V715. They operate with dither ON all the time.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 5: Brightness

This macro command is used to change the brightness of the video display to the value specified in [F1+1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
○: Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :---: |
| F0 | MEMORY |  |
| F1 | 3: Brightness |  |
| F1+1 | $0: \quad$ Dark |  |
|  | $255: \quad$ Bright |  |

## Example

- \$u100 = $3(\mathrm{~W}) \quad$ [Brightness]
\$u101 = 100 (W) [Brightness 100]
Video MEMORY \$u100
The above program changes the brightness of video display to the level of 100.


## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 6: Contrast

This macro command is used to change the contrast of the video display to the value specified in [F1+1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
| F0 | MEMORY |  |
| F1 | 4: Contrast |  |
| F1+1 | $0: \quad$ Low |  |
|  | $\vdots$ |  |
|  | 255: High |  |

## Example

- \$u100 = 4 (W) [Contrast] \$u101 = 150 (W) [Cotrast 150] Video MEMORY \$u100

The above program changes the contrast of video display to the level of 150 .

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 7: Color shade

This macro command is used to change the color shade of the video display to the value specified in $[F 1+1]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
○: Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | MEMORY |  |
| F1 | $5:$ Color shade |  |
| F1+1 | $0: \quad$ Light |  |
|  | $\vdots$ |  |
|  | $255:$ | Dark |

## Example

- \$u100 = $5(\mathrm{~W}) \quad$ [Color shade]
\$u101 = 120 (W) [Color shade 120]
Video MEMORY \$u100
The above program changes the color shade of video display to the level of 120.


## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 8: Save settings/reset to default

This macro command is used to save the current video settings or to reset them to the defaults.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Default |  |
| :--- | :--- | :--- | :--- |
| F0 | MEMORY | - |  |
| F1 | 6: Video_INF | - |  |
|  | 0: SAVE | V8/V7: 128 <br> V6: 171 |  |
|  | 1: DEFAULT | BRIGHT | V8/V7: 128 <br> V6: 24 |
|  |  | CONTRAST | V8/V7: 128 <br> V6: 44 |
|  |  |  |  |

## Example

- \$u100 = 6 (W) [Video_INF]
\$u101 = 0 (W) [SAVE]
Video MEMORY \$u100
The above program saves the video settings. The settings are maintained even after MONITOUCH is turned off.


## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected for [Multimedia].
- After the SAVE command has been executed, the video settings are maintained even after power-off.
- The execution of Video INF DEFAULT may cause MONITOUCH to pause approximately for one second.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video SIZE F1

## Function: Size

This macro command is used to change the video display to the size specified in [F1].

## Setting range

|  |  |
| :--- | :--- |
| F0 | SIZE |
|  | $160 \times 120$ |
| F1 | $320 \times 240$ |
|  | $640 \times 480$ |
|  | $640 \times 240$ |

## Example

- Video SIZE $160 \times 120$


The above program changes the video display size to $160 \times 120$.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

Video SIZE F1 F2 . . . . . . . . . . . . . . . . . Command designation

## Function: Size (dot)

This macro command is used to change the video display to the size specified in [F1] and [F2] (dot units).

## Setting range

|  | Value |  |
| :---: | :---: | :--- |
| F0 | Size (dot) |  |
| F1 | $1:$ |  |
|  | $\vdots$ |  |
|  | $800:$ |  |
| F2 | $1:$ |  |
|  | $\vdots$ | Heidth |
|  | $600:$ |  |

## Example

- Video SIZE 10075

The above program changes the video display size to $100 \times 75$.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected for [Multimedia] on the V8 series.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## Video SEL_CH F1 . . . . . . . . . . . . . . . . Command designation

## Function: Channel

This macro command is used to change the video display to the channel specified in [F1].

## Setting range

| Memory | Data |
| :---: | :--- |
| F0 | SEL_CH |
|  | 1 |
| F1 | 2 |
|  | 3 |
|  | 4 |

## Example

- Video SEL_CH2


The above program changes the video display to channel 2.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

Video DITHER F1. . . . . . . . . . . . . . . . . Command designation

## Function: Dithering

This macro command is used to switch on/off the dithering of video display.

## Setting range

|  | Data |
| :--- | :--- |
| F0 | DITHER |
| F1 | OFF <br> ON |

## Example

- Video DITHER OFF

The above program switches the dithering of video display to OFF.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- This function is invalid with the V8 series and V715. They operate with dither ON all the time.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Video BRIGHT F1

## Function: Brightness

This macro command is used to change the brightness of the video display to the value specified in [F1].

## Setting range

|  | Data |  |
| :---: | :---: | :---: |
| F0 | BRIGHT |  |
| F1 | $0:$ | Dark |
|  | $\vdots$ |  |
|  | $255:$ | Bright |

## Example

- Video BRIGHT 100

The above program changes the brightness of video display to the level of 100.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Video CONTRAST F1 .............. . . Command designation

## Function: Contrast

This macro command is used to change the contrast of the video display to the value specified in [F1].

## Setting range

|  |  |  |
| :---: | :---: | :---: |
| F0 | CONTRAST | Data |
| F1 | $0:$ | Low |
|  | $\vdots$ |  |
|  | $255:$ | High |

## Example

- Video CONTRAST 150

The above program changes the contrast of video display to the level of 150 .

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video COLOR F1

## Function: Color shade

This macro command is used to change the color shade of the video display to the value specified in [F1].

## Setting range

|  |  |  |
| :---: | :---: | :---: |
| F0 | COLOR | Data |
| F1 | $0: \quad$ Light |  |
|  | $\vdots$ |  |
|  | $255:$ | Dark |

## Example

- Video COLOR 120

The above program changes the color shade of video display to the level of 120.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

Video INF F1. . . . . . . . . . . . . . . . . . . . . Command designation
Function: Save settings/reset to default
This macro command is used to save the current video settings or to reset them to the defaults.

## Setting range

|  | Data | Default |  |
| :---: | :---: | :---: | :---: |
| F0 | INF |  |  |
| F1 | SAVE |  |  |
|  |  | BRIGHT | $\begin{aligned} & \text { V8/V7: } 128 \\ & \text { V6: } 171 \end{aligned}$ |
|  | DEFAULT | CONTRAST | $\begin{aligned} & \text { V8/V7: } 128 \\ & \text { V6: } 24 \end{aligned}$ |
|  |  | COLOR | $\begin{aligned} & \text { V8/V7: } 128 \\ & \text { V6: } 44 \end{aligned}$ |

## Example

- Video INF SAVE

The above program saves the video settings. The settings are maintained even after MONITOUCH is turned off.

## Supplemental remarks

- The macro command is valid when [Video Overlap] is selected from [Multimedia].
- After the SAVE command has been executed, the video settings are maintained even after power-off.
- The execution of Video INF DEFAULT may cause MONITOUCH to pause approximately for one second.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Video2

| V815X | $\bigcirc$ |
| :---: | :---: |
| V812S | $\bigcirc$ |
| V810S | $\bigcirc$ |
| V810T | $\bigcirc$ |
| V810C |  |
| V808S | $\bigcirc$ |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | $\bigcirc$ |
| V712S | $\bigcirc$ |
| V710S | $\bigcirc$ |
| V710T | $\bigcirc$ |
| V710C |  |
| V708S | $\bigcirc$ |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606ic |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

Video2 MEMORY F1 . . . . . . . . . . . . . . . Memory designation

## Function 1: Single snap

This macro command is used to save the image in the channel specified in [F1+1] in the CF card under the file number specified in [F1+2].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 0: SNAP |
| F1+1 | 1: 1 CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4 CH |
|  | 5: 5CH (RGB only for V8) |
|  | 6: 6CH (RGB only for V8) |
|  | -1: Auto *1 |
| F1+2 | $\begin{array}{ll} \hline 00000 & \text { File No. } \\ \vdots \\ 32767 \\ -1: & \\ \text { Auto *2 } \end{array}$ |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 Auto: File
If no file exists in the CF card, numbering the files to be stored increments from " 0 ". If some files already exist, numbering increments following the maximum of the existing file numbers.
When increment reaches [Maximum Number of Snap Files in Auto] in the [Video/RGB Setting] dialog, the action to be taken depends on which option is checked for [When the Snap File Limitation is Exceeded]. With [Stop] checked, no more execution of the macro command is enabled. With [Overwrite] checked, increment will be reset to " 0 " and the files will be overwritten.


## Example

- \$u100 = 0 (W) [SNAP] \$u101 = $1(\mathrm{~W}) \quad[1 \mathrm{CH}]$ \$u102 = 5 (W) [File No. 5]
Video2 MEMORY \$u100



## Supplemental remarks

- The macro command is valid while a video image is displayed on the V series with a CF card inserted into it.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 2: Background snap

This macro command is used to save the image in the channel specified in [F1+1] at the size specified in $[F 1+3]$ in the CF card under the file number specified in [F1+2].

Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 11: SNAP (background) |
| F1+1 | 1: 1-H |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4 CH |
|  | 5: 5CH (RGB only for V8) |
|  | 6: 6CH (RGB only for V8) |
| F1+2 | 00000: File No. <br> $\vdots$  <br> $32767:$  <br> $-1:$ Auto *1 |
| F1+3 | 0: $160 \times 120$ |
|  | 1: $320 \times 240$ |
|  | 2: $640 \times 480$ |
|  | 3: $640 \times 240$ *2 |

*1 Auto: File
If no file exists in the CF card, numbering the files to be stored increments from " 0 ". If some files already exist, numbering increments following the maximum of the existing file numbers.
When increment reaches [Maximum Number of Snap Files in Auto] in the [Video/RGB Setting] dialog, the action to be taken depends on which option is checked for [When the Snap File Limitation is Exceeded]. With [Stop] checked, no more execution of the macro command is enabled. With [Overwrite] checked, increment will be reset to " 0 " and the files will be overwritten.
*2 The snap area is distinguished based on the value at $\$ \mathrm{~s} 957$.

## Example

- \$u100 = 11 (W) [Background snap] \$u101 = $1(\mathrm{~W}) \quad[1 \mathrm{CH}]$ \$u102 = 1000 (W) [File No.] \$u103 = 0 (W) [Size]
Video2 MEMORY \$u100


The above program saves the image of channel 1 in a size of $160 \times 120$ to the VD01000.jpg file.

## Supplemental remarks

- The macro command is valid when a CF card is inserted into the V series.
- Even if no video item setting is made in the screen data, the macro command executes the background snap function for the specified channel.
- Regardless of $\$$ s931, superimposing of images is not performed.
- If PAUSE is being executed for the channel you specified, the macro command captures its image again and executes the background snap function
- If the image of the channel specified is being zoomed in, zooming is canceled while the macro command is executing the background snap function.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 3: Strobe snap

This macro command is used to save strobe snap frames of the channel specified in $[F 1+1]$ in the CF card under the file number specified in $[F 1+2]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 1: STROBE |
| F1+1 | 1: 1 CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4 CH |
|  | 5: 5CH (RGB only for V8) |
|  | 6: 6CH (RGB only for V8) |
|  | -1: Auto *1 |
| F1+2 | $\begin{aligned} & \text { 00000: File No. } \\ & \vdots \\ & 32767: \\ & -1: \quad \text { Auto *2 } \end{aligned}$ |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 Auto: File
If no file exists in the CF card, numbering the files to be stored increments from " 0 ". If some files already exist, numbering increments following the maximum of the existing file numbers.
When increment reaches [Maximum Number of Snap Files in Auto] in the [Video/RGB Setting] dialog, the action to be taken depends on which option is checked for [When the Snap File Limitation is Exceeded]. With [Stop] checked, no more execution of the macro command is enabled. With [Overwrite] checked, increment will be reset to " 0 " and the files will be overwritten.


## Example

- $\$ \mathrm{u} 100=1(\mathrm{~W}) \quad$ [STOROBE]
$\$ \mathrm{~L} 01$ = 1 (W) [1CH]
\$u102 = 15 (W) [File No.]
Video2 MEMORY \$u100



## Supplemental remarks

- The macro command is valid while a video image is displayed on the V series with a CF card inserted into it.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## Function 4: Resize

This macro command is used to resize a $640-\times 480$-dot video image to the original size.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :--- | :--- |
| F0 | MEMORY |
| F1 | 2: RE_SIZE |

## Example

- \$u100 = 2 [RE_SIZE]

Video2 MEMORY \$u100


## Supplemental remarks

- In addition to the RE_SIZE command, double-clicking a 640-×480-dot image resizes it to the original size.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## Function 5: Zoom

This macro command is used to zoom into the image in the channel specified in [ $F 1+1$ ] to a size of $640 \times 480$ at the position specified in [F1+2].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 3: ZOOM |
| F1+1 | 1: 1CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4 CH |
|  | 5: 5CH (RGB only for V8) |
|  | 6: 6CH (RGB only for V8) |
|  | -1: Auto *1 |
| F1+2 | 0: Centering <br> 1: Upper right *2 <br> 2: Upper left *2 |

*1 Auto: CH

- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 These options can only be specified with the XGA/SVGA models. For VGA models, only centering is enabled.


## Example

- \$u100 = 3 (W) [ZOOM]
\$u101 = 1 (W) [1CH]
\$u102 = $0(\mathrm{~W}) \quad$ [Centering]
Video2 MEMORY \$u100


The above program zooms in the image of channel 1.

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 6: Brightness

This macro command is used to adjust the brightness of the video image of the channel specified in $[F 1+1]$ to the value specified in $[F 1+2]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 4: BRIGHT |
| F1+1 | 1: 1CH |
|  | 2: 2 CH |
|  | 3: 3 CH |
|  | 4: 4CH |
|  | -1: Auto *1 |
| F1+2 | $\begin{aligned} & 0: \quad \text { Dark } \\ & \vdots \\ & \text { 31: Bright } \end{aligned}$ |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

```
- $u100 = 4 (W) [BRIGHT]
$u101 = 1 (W) [1CH]
$u102 = 10 (W)
Video2 MEMOEY $u100
```

The above program changes the brightness of the channel- 1 image to the level of 10 .

## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 7: Contrast

This macro command is used to adjust the contrast of the video image of the channel specified in $[F 1+1]$ to the value specified in $[F 1+2]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :--- |
| F0 | MEMORY |
| F1 | 5: CONTRAST |
| F1+1 | 1: 1CH |
|  | 2: 2CH |
|  | 3: 3CH |
|  | 4: 4CH |
|  | -1: Auto *1 |
| F1+2 | 0: Low <br>  |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- \$u100 = $5(\mathrm{~W}) \quad$ [CONTRAST] \$u101 = $1(\mathrm{~W}) \quad[1 \mathrm{CH}]$ $\$ \mathrm{u} 102$ = 10 (W)
Video2 MEMORY \$u100
The above program changes the contrast of the channel- 1 image to the level of 10 .


## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 8: Color shade

This macro command is used to adjust the color shade of the video image of the channel specified in $[F 1+1]$ to the value specified in $[F 1+2]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 6: COLOR |
| F1+1 | 1: 1 CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4CH |
|  | -1: Auto *1 |
| F1+2 | $\begin{gathered} 0 \text { : Light } \\ \vdots \\ 31: \text { Dark } \end{gathered}$ |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

```
- $u100 = 6 (W) [COLOR]
$u101 = 1 (W) [1CH]
$u102 = 10 (W)
Video2 MEMORY $u100
```

The above program adjusts the color shade of the channel- 1 image to the level of 10 .

## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 9: Save settings/reset to default

This macro command is used to save the video settings of the channel specified in $[F 1+1]$ or to reset the settings to the defaults.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data | Default |  |
| :---: | :---: | :---: | :---: |
| F0 | MEMORY | - |  |
| F1 | 7: VIDEOINF | - |  |
| F1+1 | 1: 1 CH | - |  |
|  | 2: 2 CH |  |  |
|  | 3: 3CH |  |  |
|  | 4: 4 CH |  |  |
|  | 5: 5CH (RGB only for V8) |  |  |
|  | 6: 6CH (RGB only for V8) |  |  |
|  | -1: Auto *1 |  |  |
| F1+2 | 0: SAVE | - |  |
|  | 1: DEFAULT | BRIGHT | 16 |
|  |  | CONTRAST | 16 |
|  |  | COLOR | 16 |
|  |  | Clip start position | *2 |
|  |  | Clip size |  |

$: \leftarrow \mathrm{V}$ series (Return data)
*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 The default settings for the clip start position and the clip size varies depending on the input signal. For more information, refer to the V8 Series Reference Manual.


## Example

- \$u100 = 7 (W) [VIDEOINF]
\$u101 = $1(\mathrm{~W}) \quad[1 \mathrm{CH}]$
$\$ \mathrm{~L} 102=0(\mathrm{~W})$
Video2 MEMORY \$u100
The above program saves the video settings for channel 1.


## Supplemental remarks

- If the $V$ series unit is turned off and on again after the execution of SAVE, the data is unaffected.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 10: Pause

This macro command is used to temporarily stop the video image of the channel specified in $[F 1+1]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :--- | :--- |
| F0 | MEMORY |
| F1 | 8: PAUSE |
| F1+1 | 1: 1CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4CH |
|  | -1: Auto *1 |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- \$u100 = $8(\mathrm{~W}) \quad$ [PAUSE]
\$u101 = 1 (W) [1CH]
Video2 MEMORY \$u100
The above program causes the channel- 1 image to pause.


## Supplemental remarks

- During the execution of PAUSE, resizing is disabled.
- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 11: Pause cancel

This macro command is used to restart the video display that has been stopped by the PAUSE command.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :--- | :--- |
| F0 | MEMORY |
| F1 | $9:$ RESTART |
| F1+1 | $1: 1 \mathrm{CH}$ |
|  | 2: 2 CH |
|  | $3: 3 \mathrm{CH}$ |
|  | $4: 4 \mathrm{CH}$ |
|  | -1: Auto *1 |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- \$u100 = $9(\mathrm{~W}) \quad$ [RESTART]
\$u101 = 1 (W) [1CH]
Video2 MEMORY \$u100
This starts the channel 1 video display.


## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 12: Deletion

This macro command is used to delete the snap file VDxxxxx.jpg from the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :--- |
| F0 | MEMORY |
| F1 | 10: DELETE |
| F1+1 | 00000: File No. <br>  <br>  <br> $32767:$ |

## Example

- \$u100 = $10(\mathrm{~W})$ [DELETE] \$u101 = 1 (W) [File No.] Video2 MEMORY \$u100

The above program deletes the VD00001.jpg file from the CF card.

## Supplemental remarks

- The macro command is valid when a CF card is inserted into the V series.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 13: Change continuous single snaps

This macro command is used to change the continuous single snapping of the channel specified in $[F 1+1]$ to the operation specified in $[F 1+2]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 12: SNAP_SEQ |
| F1+1 | 1: 1 CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4 CH |
|  | 5: 5CH (RGB only for V8) |
|  | 6: 6CH (RGB only for V8) |
| F1+2 | 0: Stop |
|  | 1: Start |

## Example

- \$u100 = $12(\mathrm{~W}) \quad$ [RESTART]
$\$ \mathrm{u} 101=1(\mathrm{~W}) \quad[1 \mathrm{CH}]$
\$u102 = 1 (W) [Start]
Video2 MEMORY \$u100

This starts continuous snaps of channel 1.

## Supplemental remarks

- The continuous single snap interval and the continuous single snap time are determined as shown below according to the setting item on the [Video/RGB Display] dialog.
- When the specification for [Double Click Action] on the [Video/RGB Display] dialog is [Continuous Single Snap]:


| Serial Shoot Duration | Snap Interval |
| :--- | :--- |
| Set the time for [Serial Shoot | Set the time for [Snap Interval] on <br> Duration] on the [Snap] tab window <br> the [Snap] tab window |

- When the specification for [Double Click Action] on the [Video/RGB Display] dialog is other than [Continuous Single Snap]:


| Serial Shoot Duration | Snap Interval |
| :--- | :--- |
| One minute (fixed) | Set the time for [Strobe Speed] on <br> the [Snap] tab window |

* When one second or a shorter time is set, the time used is one second.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 14: Change clip start position

This macro command is used to change the image import start position (clip start position) for the channel specified in $[F 1+1]$ to the position specified in $[F 1+2]$ and [F1+3].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| O: Setting enabled (indirect designation disabled) |  |  |  |  |

© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :---: | :---: |
| F0 | MEMORY |
| F1 | 13: CLIP_POS |
| F1+1 | 1: 1 CH |
|  | 2: 2 CH |
|  | 3: 3CH |
|  | 4: 4 CH |
|  | 5: 5CH (RGB only for V8) |
|  | 6: 6CH (RGB only for V8) |
| F1+2 | $\begin{gathered} 0: \\ \vdots \\ \text { 1023: } \end{gathered}$ |
| F1+3 | $\begin{array}{cl} \hline 0: & \\ \vdots & \text { Starting Y coordinate } \\ 767: & \end{array}$ |

## Example

> - \$u100 = 13 (W) [CLIP_POS]
> \$u101 = $1(\mathrm{~W}) \quad[1 \mathrm{CH}]$
> \$u102 = $100(\mathrm{~W}) \quad$ [Starting $X$ coordinate: 100]
> \$u103 = 150 (W) [Starting Y coordinate: 150]

Video2 MEMORY \$u100
This changes the clip start position to $(100,150)$.

## Supplemental remarks

- For more information on the clip start position, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Function 15: Change clip size

This macro command is used to change the import size (clip size) of the image of the channel specified in $[F 1+1]$ to the size specified in $[F 1+2]$ and $[F 1+3]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Data |
| :--- | :--- |
| F0 | MEMORY |
| F1 | 14: CLIP_SIZE |
| F1+1 | $1: 1 \mathrm{CH}$ |
|  | 2: 2 CH |
|  | $3: 3 \mathrm{CH}$ |
|  | $4: 4 \mathrm{CH}$ |
|  | $5: 5 \mathrm{CH}$ (RGB only for V8) |
|  | $6: 6 \mathrm{CH}$ (RGB only for V8) |
| F1+2 | $1-1024:$ Width |
| F1+3 | $1-768:$ Height |

## Example

| - \$u100 $=13(\mathrm{~W})$ | $[$ [CLIP_SIZE] |
| :--- | :--- |
| \$u101 $=1(\mathrm{~W})$ | $[1 \mathrm{CH}]$ |
| \$u102 $=400(\mathrm{~W})$ | $[$ Width 400] |
| \$u103 $=300(\mathrm{~W})$ | $[$ Height 300] |

Video2 MEMORY \$u100
This changes the clip size to $400 \times 300$ dots.

| \$u100 $=13(\mathrm{~W})$ | [CLIP_POS] |
| :--- | :--- |
| $\$$ u101 $=1(\mathrm{~W})$ | $[1 \mathrm{CH}]$ |
| $\$$ u102 $=100(\mathrm{~W})$ | $[$ Starting $X$ coordinate: 100] |
| \$u103 $=150(\mathrm{~W})$ | $[$ Starting Y coordinate: 150] |

Video2 MEMORY \$u100
This changes the clip start position to $(100,150)$.

## Supplemental remarks

- For more information on the clip size, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Restrictions

Execute the CLIP SIZE command, and then do the CLIP POS command. For more information on the CLIP POS command, refer to page 4-127.

## Video2 SNAP F1 F2 . . . . . . . . . . . . . Command designation

## Function: Single snap

This macro command is used to save the image in the channel specified in [F1] in the CF card under the file number specified in [F2].

## Setting range

|  | Data |
| :--- | :--- |
| F0 | SNAP |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 (RGB only for V8) |
|  | CH6 (RGB only for V8) |
|  | Auto *1 |
| F2 | VD00000 |
|  | $\vdots$ |
|  | VD32767 |
|  | Auto *2 |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 Auto: File
If no file exists in the CF card, numbering the files to be stored increments from " 0 ". If some files already exist, numbering increments following the maximum of the existing file numbers.
When increment reaches [Maximum Number of Snap Files in Auto] in the [Video/RGB Setting] dialog, the action to be taken depends on which option is checked for [When the Snap File Limitation is Exceeded]. With [Stop] checked, no more execution of the macro command is enabled. With [Overwrite] checked, increment will be reset to " 0 " and the files will be overwritten.


## Example

- Video2 SNAP CH1 VD00005



## Supplemental remarks

- The macro command is valid while a video image is displayed on the V series with a CF card inserted into it.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Video2 SNAP F1 F2 (size)

Command designation

## Function: Background snap

This macro command is used to save the image of the channel specified in [F1] at any required size in the CF card under the file number specified in [F2].

## Setting range

| Memory | Data |
| :---: | :--- |
| F0 | SNAP |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | CH5 (RGB only for V8) |
|  | CH6 (RGB only for V8) |
| F2 | VD00000 |
|  | $\vdots$ |
|  | VD32767 |
|  | Auto *1 |
| Snap in Background | $160 \times 120$ |
|  | $320 \times 240$ |
|  | $640 \times 480$ |
|  | $640 \times 240$ *2 |

## *1 Auto: File

If no file exists in the CF card, numbering the files to be stored increments from " 0 ". If some files already exist, numbering increments following the maximum of the existing file numbers.
When increment reaches [Maximum Number of Snap Files in Auto] in the [Video/RGB Setting] dialog, the action to be taken depends on which option is checked for [When the Snap File Limitation is Exceeded]. With [Stop] checked, no more execution of the macro command is enabled. With [Overwrite] checked, increment will be reset to " 0 " and the files will be overwritten.
*2 The snap area is distinguished based on the value at $\$$ s957.

## Example

- Video2 SNAP CH1 VD01000 $160 \times 120$


The above program saves the image of channel 1 in a size of $160 \times 120$ to the VD01000.jpg file.

## Supplemental remarks

- The macro command is valid when a CF card is inserted into the V series.
- Even if no video item setting is made in the screen data, the macro command executes the background snap function for the specified channel.
- Regardless of \$s931, superimposing of images is not performed.
- If PAUSE is being executed for the channel you specified, the macro command captures its image again and executes the background snap function.
- If the image of the channel specified is being zoomed in, zooming is canceled while the macro command is executing the background snap function.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 STROBE CH FileNo. . . . . . . . Command designation

## Function: Strobe snap

This macro command is used to save the strobe snap frames of the channel specified in [F1] in the CF card under the file number specified in [F2].

## Setting range

|  | Data |
| :--- | :--- |
| F0 | STROBE |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | CH5 (RGB only for V8) |
|  | Auto *1 |
|  | VDB only for V8) |
| F2 | VD00000 <br>  <br>  <br> VD32767 <br> Auto *2 |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 Auto: File
If no file exists in the CF card, numbering the files to be stored increments from " 0 ". If some files already exist, numbering increments following the maximum of the existing file numbers.
When increment reaches [Maximum Number of Snap Files in Auto] in the [Video/RGB Setting] dialog, the action to be taken depends on which option is checked for [When the Snap File Limitation is Exceeded]. With [Stop] checked, no more execution of the macro command is enabled. With [Overwrite] checked, increment will be reset to " 0 " and the files will be overwritten.


## Example

- Video2 STROBE CH1 VD00015



## Supplemental remarks

- The macro command is valid while a video image is displayed on the V series with a CF card inserted into it.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Video2 RE_SIZE

Command designation

## Function: Resize

This macro command is used to resize a $640-\times 480$-dot video image to the original size.

## Setting range

|  |  |
| :---: | :--- |
| F0 | RE_SIZE |

## Example

- Video2 RE_SIZE



## Supplemental remarks

- In addition to the RE_SIZE command, double-clicking a 640-×480-dot image resizes it to the original size.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

Video2 ZOOM F1 F2
.Command designation

## Function: Zoom

This macro command is used to zoom into the image in the channel specified in [F1] to a size of $640 \times 480$ at the position specified in [F2].

## Setting range

|  | Data |
| :--- | :--- |
| F0 | ZOOM |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | CH5 (RGB only for V8) |
|  | CH6 (RGB only for V8) |
|  | Auto *1 |
| F2 | Centering <br> Upper right *2 <br> Lower left *2 |

*1 Auto: CH

- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 The options are enabled for XGA/SVGA only. For VGA, only centering is enabled.


## Example

- Video2 ZOOM 1CH Centering


The above program zooms in the image of channel 1.

## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 BRIGHT F1 F2

## Function: Brightness

This macro command is used to adjust the brightness of the video image of the channel specified in $[F 1]$ to the value specified in [F2].

## Setting range

|  | Data |
| :--- | :--- |
| F0 | BRIGHT |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | Auto *1 |
| F2 | 0: Dark |
|  | $\vdots$ |
|  | 31: Bright |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- Video2 BRIGHT CH1 10

The above program changes the brightness of the channel- 1 image to the level of 10 .

## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

Video2 CONTRAST F1 F2 . . . . . . . . . . Command designation

## Function: Contrast

This macro command is used to adjust the contrast of the video image of the channel specified in [F1] to the value specified in [F2].

## Setting range

|  | Data |
| :---: | :--- |
| F0 | CONTRAST |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | Auto *1 |
| F2 | $0: \quad$ Low |
|  | $\vdots$ |
|  | $31: \quad$ High |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- Video2 CONTRAST CH1 10

The above program changes the contrast of the channel-1 image to the level of 10 .

## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 COLOR F1 F2 <br> Command designation

## Function: Color shade

This macro command is used to adjust the color shade of the video image of the channel specified in $[F 1]$ to the value specified in [F2].

## Setting range

|  | Data |
| :---: | :--- |
| F0 | COLOR |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | Auto *1 |
| F2 | $0: \quad$ Light |
|  | $\vdots$ |
|  | 31: Dark |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- Video2 COLOR CH1 10

The above program adjusts the color shade of the channel- 1 image to the level of 10 .

## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## Video2 VIDEOINF F1 F2 ............ . . Command designation

## Function: Save settings/reset to default

This macro command is used to save the video settings of the channel specified in [F1] or to reset the settings to the defaults.

## Setting range

|  | Data | Default |  |
| :---: | :---: | :---: | :---: |
| F0 | VIDEOINF | - |  |
| F1 | CH1 CH2 CH3 CH4 CH5 (RGB only for V8) CH6 (RGB only for V8) Auto *1 | - |  |
| F2 | SAVE | - |  |
|  | DEFAULT | BRIGHT | 16 |
|  |  | CONTRAST | 16 |
|  |  | COLOR | 16 |
|  |  | Clip start position | *2 |
|  |  | Clip size |  |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.
*2 The default settings for the clip start position and the clip size varies depending on the input signal. For more information, refer to the V8 Series Reference Manual.


## Example

- Video2 VIDEO_INF CH1 SAVE

The above program saves the video settings for channel 1.

## Supplemental remarks

- If the $V$ series unit is turned off and on again after the execution of SAVE, the data is unaffected.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 PAUSE F1 . . . . . . . . . . . . . . . . Command designation

## Function: Pause

This macro command is used to temporarily stop the video image of the channel specified in [F1].

## Setting range

|  | Data |
| :--- | :--- |
| F0 | PAUSE |
|  | CH1 |
| F1 | CH2 |
|  | CH3 |
|  | CH4 |
|  | Auto *1 |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- Video2 PAUSE CH1

The above program causes the channel-1 image to pause.

## Supplemental remarks

- During the execution of PAUSE, resizing is disabled.
- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 RESTART F1

.Command designation

## Function: Pause cancel

This macro command is used to restart the video display that has been stopped by the PAUSE command.

## Setting range

|  | Data |
| :--- | :--- |
| F0 | RESTART |
|  | CH1 |
| F1 | CH2 |
|  | CH3 |
|  | CH4 |
|  | Auto *1 |

*1 Auto: CH

- While [ZOOM] is executed, the channel set for [ZOOM] becomes the target for the macro command.
- When [Specify Display Priority] is checked, the specified channel becomes the target for the macro command.
- When one-channel display is selected in any cases except for the above, the channel of the image being displayed becomes the target for the macro command. When multiple-channel display is selected, the macro command is invalid.


## Example

- Video2 RESTART CH1

The above program restarts the channel-1 video display.

## Supplemental remarks

- This function is only effective with the video channels (1CH to 4CH). It doesn't work with the RGB channels ( 5 CH and 6 CH ).
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 DELETE F1. . . . . . . . . . . . . . . Command designation

## Function: Deletion

This macro command is used to delete the snap file VDxxxxx.jpg from the CF card.

## Setting range

|  |  |
| :---: | :---: |
| F0 | DELETE |
| F1 | VD00000 |
|  | $\vdots$ |
|  | VD32767 |

## Example

- Video2 DELETE VD00001

The above program deletes the VD00001.jpg file from the CF card.

## Supplemental remarks

- The macro command is valid when a CF card is inserted into the $V$ series.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

Video2 SNAP_SEQ F1 F2 . . . . . . . . . . Command designation
Function: Change continuous single snaps
This macro command is used to change the continuous single snapping of the channel specified in [F1] to the operation specified in [F2].

## Setting range

|  | Data |
| :--- | :--- |
| F0 | SNAP_SEQ |
|  | CH1 |
| F1 | CH2 |
|  | CH3 |
|  | CH4 |
|  | CH5 |
|  | CH6 |
| F2 | START |
|  | STOP |

## Example

- Video2 SNAP_SEQ CH 1 START

This starts continuous snaps of channel 1.

## Supplemental remarks

- This macro command is valid only for the V8 series.
- The continuous single snap interval and the continuous single snap time are determined as shown below according to the setting item on the [Video/RGB Display] dialog.
- When the specification for [Double Click Action] on the [Video/RGB Display] dialog is [Continuous Single Snap]:


| Serial Shoot Duration | Snap Interval |
| :--- | :--- |
| Set the time for [Serial Shoot | Set the time for [Snap Interval] on |
| Duration] on the [Snap] tab window | the [Snap] tab window |

- When the specification for [Double Click Action] on the [Video/RGB Display] dialog is other than [Continuous Single Snap]:


| Serial Shoot Duration | Snap Interval |
| :--- | :--- |
| One minute (fixed) | Set the time for [Strobe Speed] on <br> the [Snap] tab window |

* When one second or a shorter time is set, the time used is one second.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 CLIP_POS F1 F2 F3 . . . . . . . .Command designation

## Function: Change clip start position

This macro command is used to change the image import start position (clip start position) for the channel specified in [F1] to the position specified in [F2] and [F3].

## Setting range

|  | Data |
| :---: | :--- |
| F0 | CLIP_POS |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH4 |
|  | CH5 |
|  | CH6 |
| F2 | $0:$ |
|  | $\vdots$ |
|  | $1023:$ |
| F3 | $0:$ |
|  | $\vdots$ |
|  | $767:$ |

## Example

- Video2 CLIP_POS CH 1100150

This changes the clip start position to $(100,150)$.

## Supplemental remarks

- This macro command is valid only for the V8 series.
- For more information on the clip start position, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Video2 CLIP_SIZE F1 F2 F3. . . . . . . . Command designation

## Function: Change clip size

This macro command is used to change the import size (clip size) of the image of the channel specified in [F1] to the size specified in [F2] and [F3].

## Setting range

|  | Data |
| :---: | :--- |
| F0 | CLIP_SIZE |
| F1 | CH1 |
|  | CH2 |
|  | CH3 |
|  | CH5 |
|  | CH6 |
| F2 | $1:$ |
|  | $\vdots$ |
|  | $1024:$ |
| F3 Width |  |
|  | $1:$ |
|  |  |
|  | $768:$ |

## Example

- Video2 CLIP_SIZE CH 1400300

This changes the clip size to $400 \times 300$ dots.
Video2 CLIP_POS CH 1100150
This changes the clip start position to $(100,150)$.

## Supplemental remarks

- This macro command is valid only for the V8 series.
- For more information on the clip size, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1061. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Restrictions

Execute the CLIP SIZE command, and then do the CLIP POS command. For more information on the CLIP POS command, refer to page 4-146.

### 4.14 PLC

PLC_CLND

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## PLC_CLND F0 PLC F1 F2 F3

## Function: Calendar control function for PLC [F1]

This macro command is used to control the calendar for the PLC specified in [F1]. Depending on the value specified in [F0] it specifies reading or writing of the calendar data.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |
| F1 | O |  |  | $\bigcirc$ |
| F2 | O |  |  |  |
| F3 | O |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | $\begin{array}{l}\text { 0: Calendar reading }{ }^{* 1} \\ \text { 1: Calendar writing } \\ \text { (specified by user) }\end{array}$ |  |
| 2: $\begin{array}{l}\text { Calendar writing (by the system) }\end{array}$ |  |  |
| F1 | 2- 8: PLC number |  |
| F2 | $0-31:$ PLC port number | Invalid with 1:1 connections |\(\left.| \begin{array}{l}Invalid with 1:1 connections <br>

Only valid for PLCs with sub <br>
port number designations\end{array}\right\}\)

* Details of calendar function specification
*1 When [F0] = 0: Calendar reading
When the connection method specified in $[F 1]$ is " $1: 1$ ", the calendar is read for the connected device and the information is saved in the [F3] memory. (The contents in the [F2] memory are ignored.)
When the connection method specified in [F1] is " $1: n$ ", the calendar for the device with the port number specified in [F2] or the sub port number specified in $[F 2+1]$ is read and saved in the [F3] memory.
The $V$ series system calendar is not changed by any command. To change the system calendar, use " SYS (SET_SYS_CLND) F1" (page 4-296).
*2 When $[F 0]=1$ : Calendar reading (specified by user)
When the connection method specified in $[F 1]$ is " $1: 1$ ", the calendar data in the [F3] memory is written to the connected device.
(The contents in the [F2] memory are ignored.)
When the connection method specified in [F1] is " $1: \mathrm{n}$ ", the calendar data specified in [F3] is written to the device with the port number specified in [F2] or the sub port number specified in [F2+1].
*3 When [F0] = 2: Calendar reading (by the system)
When the connection method specified in [F1] is " $1: 1$ ", the $V$ series unit's system calendar data is written to the connected device.
(The contents in the [F2] memory and the [F3] memory are ignored.)
When the connection method specified in [F1] is "1:n", the system's calendar data specified in [F3] is written to the device with the port number specified in [F2] or the sub port number specified in [F2+1].
(The contents in the [F3] memory are ignored.)


## Example

- Setting the calendar for PLC2, port No. 1 to 20:00:00 on October 15, 2007



## Supplemental remarks

- If the relevant device doesn't incorporate a calendar, nothing happens in response to the command. (The $V$ series automatically judges whether or not the device incorporates a calendar.)
- Nothing happens to the device whose link has been dead in response to the command.
- The result of macro execution is stored in \$s729.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2004 | A PLC [F1] communication error has occurred during processing. |
| FFFF | Execution error |

PLC_CTL

| All V8 models | O |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMl | O |
| TELLUS2 HMl |  |

## PLC_CTL PLC F0 F1 F2

## Function: PLC [F1] control function

This macro command is used to control the operation specified in the words starting from the address in [F1] in relation to the PLC specified in [F0]. The number of words is specified in [F2].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $O$ |
| F1 | O |  |  |  |
| F2 |  |  |  | $O$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | $1-8: \quad$ PLC number |
| F1 | $0-31:$ PLC port number |
| F1+1 | Command and others <br> The items to be set differ depending on the device. For more <br> information, refer to the V8 Series Connection Manual. |
| $:$ | The number of words to be transferred |
| F2 |  |

## Example

- Bringing Omron's E5ZN (port No. 1) connected to the PLC2 to a state of RUN:
\$u100 = $1(\mathrm{~W}) \quad$ [PLC port number]
$\$ \mathrm{u} 101=30 \mathrm{H}(\mathrm{W}) \quad$ [Command]
$\$ \mathrm{Lu} 102=100 \mathrm{H}(\mathrm{W}) \quad[$ Operation command (RUN)]
PLC_CTL PLC2 \$u100 3

| Contents | F0 | (F1 (=\$u n) =\$u100 |  |  | F2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Operation command | $\begin{gathered} 1-8 \\ (\text { PLC1-8) } \end{gathered}$ | n | =\$u100 | (Port number* |  |
|  |  | n+1 | =\$u101 | (Command: 0030 H ) |  |
|  |  | $\mathrm{n}+2$ |  | 0000H: Communication writing OFF (disabled) 0001H: Communication writing ON (enabled) |  |
|  |  |  |  |  |  |
|  |  |  | =\$u102 | 0200H: Multi-SP (Set point 0) 0201H: Multi-SP (Set point 1) 0202H: Multi-SP (Set point 2) $0203 H:$ Multi-SP (Set point 3) |  |
|  |  |  |  | 0300H: AT cancel 0301H: AT execution |  |
|  |  |  |  | 0400H: Write mode (Backup) <br> 0401H: Write mode (RAM) |  |
|  |  |  |  | 0500H: Save RAM data |  |
|  |  |  |  | 0600H: Software reset |  |
|  |  |  |  | 0700H: Move to set area 1 |  |
|  |  |  |  | 0800H: Move to protect level |  |

[^5]- The result of macro execution is stored in \$s729.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2002 | Memory cannot be allocated. |
| 2004 | A PLC [FO] communication error has occurred during processing. |

TBL_READ

| All V8 models | O |
| :--- | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | O |
| TELLUS2 HMI |  |

TBL_READ F0 <- TABLE:PLC F1 : F2

## Function: Device memory map memory read

This macro command is used to transfer the data at the addresses registered in the device memory map specified in [F2] of the PLC specified in [F1] to the addresses starting with the one specified in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Top memory address of the target |
| F1 | $1-8: \quad$ PLC number |
| F2 | $0-31: \quad$ Device memory map No. |

## Example

- Transferring the data of the addresses registered in device memory map No. 5 defined at PLC3 to \$u500 onward
TBL_READ \$u500 <- TABLE: PLC3: 5


## Supplemental remarks

- As many addresses as the data count set in the device memory map must be allocated to the target memory, to which data will be transferred.
- The result of macro execution is stored in \$s729.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2001 | Memory set in the device memory map does not exist. |
| 2002 | Memory cannot be allocated. |
| 2004 | A PLC [F1] communication error has occurred during processing. |

TBL_WRITE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## TBL_WRITE TABLE:PLC F1 : F0 <- F2

## Function: Device memory map memory write

This macro command is used to transfer the data at the location starting from the address specified in [F2] to the memory registered in the device memory map [F0] for the PLC [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | ○ |  |  | $\bigcirc$ |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | $0-31: \quad$ Device memory map No. |
| F1 | $1-8: \quad$ PLC number |
| F2 | Top memory address of the source |

## Example

- Transferring the data of \$u500 onward to the addresses registered in device memory map No. 5 defined at PLC3
TBL_WRITE TABLE : PLC3: 5 <- \$u00500


## Supplemental remarks

- As many addresses as the data count set in the device memory map must be allocated to the target memory, to which data will be transferred.
- The result of macro execution is stored in \$s729.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2001 | Memory set in the device memory map does not exist. |
| 2002 | Memory cannot be allocated. |
| 2004 | A PLC [F1] communication error has occurred during processing. |

### 4.15 Temperature Control / PLC2Way

## TEMP_READ

| All V8 models | $\triangle$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI | $\triangle$ |
| TELLUS2 HMI | $\bigcirc$ |

## TEMP_READ F0 <- TABLE : F1

## Function: Device memory map memory read

This macro command is used to transfer the data in memory registered in the device memory map [F1] to the location starting from the address in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ | $\odot{ }^{*}$ | $\odot$ |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

* If the [F0] memory is specified as a PLC memory, it is fixed as PLC1.


## Setting range

|  | Value |
| :--- | :--- |
| F0 | Top memory address of the target |
| F1 | $0-31:$ Device memory map No. (for PLC2) |

## Example

- TEMP_READ PLC1 [D00000] = TABLE : 5

The above program transfers the data at the addresses registered in device memory map No. 5 of PLC2 to D0 onward.

## Supplemental remarks

- As many addresses as the data count set in the device memory map must be allocated to the target memory, to which data will be transferred.
- The result of macro execution is stored in $\$ s 729$.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2001 | Memory set in the device memory map does not exist. |
| 2002 | Memory cannot be allocated. |
| 2004 | A PLC2 communication error has occurred during processing. |

- For the V8 series with TELLUS version 3 in HMI mode, use "TBL_READ" (page 4-152).
(The macro command explained on this page cannot be selected for the V8 series with TELLUS version 3 in HMI mode.)

TEMP_WRITE

| All V8 models | $\triangle$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI | $\triangle$ |
| TELLUS2 HMI | $\bigcirc$ |

TEMP_WRITE TABLE : F0 <- F1

## Function: Device memory map memory write

This macro command is used to transfer the data at the location starting from the address specified in [F1] to the memory registered in the device memory map [F0] for the PLC2.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  | $\bigcirc$ |
| F1 | $\odot$ | $\odot ~ *$ | $\odot$ |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

* If the [F1] memory is specified as a PLC memory, it is fixed as PLC1.


## Setting range

|  | Value |
| :--- | :--- |
| F0 | $0-31:$ Device memory map No. (for PLC2) |
| F1 | Top memory address of the source |

## Example

- TEMP_WRITE TABLE : 5 = PLC1 [D00000]

The above program transfers the data of D0 onward of PLC1 to the addresses registered in device memory map No. 5 of PLC2.

## Supplemental remarks

- As many addresses as the data count set in the device memory map must be allocated to the source memory, from which data will be transferred.
- The result of macro execution is stored in \$s729.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2001 | Memory set in the device memory map does not exist. |
| 2002 | Memory cannot be allocated. |
| 2004 | A PLC2 communication error has occurred during processing. |

- For the V8 series with TELLUS version 3 in HMI mode, use "TBL_WRITE" (page 4-153).
(The macro command explained on this page cannot be selected for the V8 series with TELLUS version 3 in HMI mode.)


## TEMP_CTL

| All V8 models | $\Delta$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI | $\triangle$ |
| TELLUS2 HMI | $\bigcirc$ |

## TEMP_CTL F0 F1

## Function: PLC2 control function

This macro command is used to control the operation specified in the words starting from the top address in [F0] in relation to PLC2. The number of words is specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| F1 |  |  |  | O |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | $0-31:$ Port number (PLC2) |
| F0+1 | Command and others <br> Setting items depend on the models. For more information, refer <br> to the V8 Series Connection Manual |
| $:$ | The number of words to be transferred |
| F1 |  |

- The result of macro execution is stored in \$s729.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (HEX) | Contents |
| :---: | :--- |
| 2002 | Memory cannot be allocated. |
| 2004 | A PLC2 communication error has occurred during processing. |

- For the V8 series with TELLUS version 3 in HMI mode, use "PLC_CTL" (page 4-150).
(The macro command explained on this page cannot be selected for the V8 series with TELLUS version 3 in HMI mode.)


### 4.16 Ethernet

## SEND

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $O$ |

## SEND F0 C:F1 TO F2

## Function: Transfer to server

This macro command is used to transfer the data of words starting from the address specified in [F0] to the server of the network table number in [F2]. The number of the words is specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\odot$ |  |  | $\bigcirc$ |

: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Top memory address of the source |
| F1 | $0-2000:$ The number of words to be transferred |
| F2 | 0-255: $\quad$ Transfer target (network table number) ${ }^{*}$ |

* In the case of V7/V6/TELLUS2 HMI, a maximum of 99 tables can be registered.


## Example

- SEND PLC2 [D10] C:2 TO:3

The above program transfers two words of data starting from D10 of PLC2:B to network table No. 3 (server A).


## Supplemental remarks

The following describes the system memory associated with the SEND command. For more information, refer to the V8 Series Connection Manual.

| Address | Contents | Remarks |
| :---: | :--- | :---: |
| $\$ s 512$ | Specify a port when two Ethernet ports are used | $\rightarrow \mathrm{V}$ |
| $\$ s 514$ | Set the macro execution format (wait request) | $\rightarrow \mathrm{V}$ |
| $\$ s 515$ | Store the result of macro execution | $\leftarrow \mathrm{V}$ |

## EREAD

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## EREAD F0 = F1 C:F2 F3

## Function: Read on the network

This macro command is used to read the data of words starting from the address specified in [F1] set in the [F3]-specified network table into the address in [F0]. The number of the words is specified in [F2].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\odot$ |  |  | $\bigcirc$ |
| F3 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Top memory address of the target |
| F1 | Top memory address of the source |
| F2 | $0-2000:$ The number of words to be transferred |
| F3 | $0-255: \quad$ Transfer source (network table number) ${ }^{*}$ |

* In the case of V7/V6/TELLUS2 HMI, a maximum of 99 tables can be registered.


## Example

- EREAD PLC1 [D200] = PLC1 [D100] C:2 5

The above program reads two words of data starting from D100 of PLC2:B, which is connected to network table No. 5 (V series:B), into D200 onward of PLC1:A.


## Supplemental remarks

The following describes the system memory associated with the EREAD command. For more information, refer to the V8 Series Connection Manual.

| Address | Contents | Remarks |
| :---: | :--- | :---: |
| $\$ s 512$ | Specify a port when two Ethernet ports are used | $\rightarrow \mathrm{V}$ |
| $\$ s 514$ | Set the macro execution format (wait request) | $\rightarrow \mathrm{V}$ |
| $\$ s 515$ | Store the result of macro execution | $\leftarrow \mathrm{V}$ |

## EWRITE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## EWRITE F0 F1 = F2 C:F3

## Function: Write on the network

This macro command is used to write data starting from the address specified in [F2] to the address specified in [F0] of the device connected to the network table number specified in [F1]. The number of words is specified in [F3].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\odot$ | $\odot$ | $\odot$ |  |
| F3 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Top memory address of the target |
| F1 | $0-255: \quad$ Transfer target (network table number) ${ }^{*}$ |
| F2 | Top memory address of the source |
| F3 | $0-2000:$ The number of words to be transferred |

* In the case of V7/V6/TELLUS2 HMI, a maximum of 99 tables can be registered.


## Example

- EWRITE PLC1 [D100] 5 = \$u100 C:2

The above program writes two words of data starting from \$u100 of the $V$ series:A to D100 onward of PLC2:B which is connected to network table No. 5 (V series:B).


## Supplemental remarks

The following describes the system memory associated with the EWRITE command. For more information, refer to the V8 Series Connection Manual.

| Address | Contents | Remarks |
| :---: | :--- | :---: |
| $\$ s 512$ | Specify a port when two Ethernet ports are used | $\rightarrow \mathrm{V}$ |
| $\$ s 514$ | Set the macro execution format (wait request) | $\rightarrow \mathrm{V}$ |
| $\$ s 515$ | Store the result of macro execution | $\leftarrow \mathrm{V}$ |

### 4.17 CF Card (Recipe)

## LD_RECIPE

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $O$ |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## LD_RECIPE F0 F1

## Function: Read CSV file

This macro command is used to transfer the CSV file specified in [F1] to the location starting from the address in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
| F1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Transfer target address |
| F1 | $0000-9999: \quad$ CSV file number |

## CSV file

Storage target: <br>(access folder)\RECIPE
File name: $\quad$ RECxxxx.csv 0000-9999: File No.

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The $\bullet$ mark indicates the position of line No. 1 and column No. 1 in a CSV file.


## Example

- LD_RECIPE \$u200 1

The data in the REC0001.csv file is transferred to the location starting from $\$ \mathrm{~L} 200$.


|  | $\cdots$ |
| :---: | :---: |
| \$u200 | 0 |
| \$u201 | 1 |
| \$u202 | 2 |
| \$u203 | 3 |
| \$u204 | 4 |
| \$u205 | 5 |
| \$u206 | 6 |
| \$u207 | 10 |
| \$u208 | 11 |
| \$u209 | 12 |
| \$u210 | 13 |
| \$u211 | 14 |
| \$u212 | 15 |
| \$u213 | 16 |
| \$u214 | 100 |
| \$u215 | 101 |
| \$u216 | 102 |
| \$u217 | 103 |
| \$u218 | 104 |
| \$u219 | 105 |
| \$u220 | 106 |
| \$u221 | 1000 |
| \$u222 | 1100 |
| \$u223 | 1200 |
| \$u224 | 1300 |
| \$u225 | 1400 |
| \$u226 | 1500 |
| \$u227 | 1600 |
| \$u228 | 10000 |
| \$u229 | 10001 |
| \$u230 | 10002 |
| \$u231 | 10003 |
| \$u232 | 10004 |
| \$u233 | 10005 |
| \$u234 | 10006 |

## Supplemental remarks

- Attribute setting is required for each CSV file.

- For reading text, whether to convert a null to 20 H (space) or read it as " 00 " can be selected.
Go to the [General Setting] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [General Settings]). On the tab window, check or uncheck [ $\square$ Convert NULL to Space with the LD/RD Macro].

Example:

CSV file


Attribute


Execution result

| Storage <br> memory | Checked | Unchecked |
| :---: | :---: | :---: |
| n | 2041 H | 0041 H |
| $\mathrm{n}+1$ | 2042 H | 0042 H |
| $\mathrm{n}+2$ | 2043 H | 0043 H |
| $\mathrm{n}+3$ | 2020 H | 0000 H |

A null is converted to 20 H .

A null remains " 00 ".

- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

LD_RECIPE2

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## LD_RECIPE2 F0 F1 F2

## Function: Read CSV file (attribute designation)

This macro command is used to transfer the CSV file specified in [F1] in the format of the attribute number in [F2] to the location starting from the address in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| F2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Transfer target address |
| F1 | $0000-9999: \quad$ CSV file number |
| F2 | $0-255: \quad$ Attribute number |

## CSV file

Storage target: $\backslash$ (access folder)\RECIPE
File name:
IRECxxxx.csv

$$
\overline{0000} \text { - 9999: File No. }
$$

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The $~ m a r k ~ i n d i c a t e s ~ t h e ~ p o s i t i o n ~ o f ~ l i n e ~$ No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\checkmark$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | - |  |  |  | Title |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - |  | Title |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example

- LD_RECIPE2 \$u100 23

The above program transfers the data in the REC0002.csv file in the format of attribute No. 3 to the location starting from \$u100.

\%
DAT0000


## Supplemental remarks

- Attribute setting made in the same format as the CSV file is required.

- For reading text, whether to convert a null to 20 H (space) or read it as " 00 " can be selected. For more information, refer to page 4-162.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## LD_RECIPESEL

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $O$ |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## LD_RECIPESEL F0 F1

## Function: Read CSV file (in units of a cell)

This macro command is used to transfer part of the CSV file specified in [F1] to the location starting from the address in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |
| :---: | :--- | :--- | :--- | :---: |
|  | $\square$ Reverse Definition of Lines/ <br> Columns | $\square$ Reverse Definition of Lines/ <br> Columns |  |  |
| F0 | Transfer source address |  |  |  |
| F1 | $0000-9999: \quad$ CSV file number |  |  |  |
| F1+1 | $1-32767: \quad$ Top line number | $1-4096:$ | Top line number |  |
| F1+2 | 0 0*-4096: Top column number | $0^{*}-4096:$ | Top column number |  |
| F1+3 | $1-32767: \quad$ Number of lines | $1-4096: \quad$ Number of lines |  |  |
| F1+4 | $1-4096: \quad$ Number of columns | $1-4096: \quad$ Number of columns |  |  |

* Specify "0" if you wish to transfer the record name as well. In that case, check [Record Name + Data] under [Transfer Mode] in the [Attribute Setting] dialog. The number of columns specified in F1+4 includes the cell of the record name.


## CSV file

Storage target: $\backslash$ (access folder)\RECIPE
File name: $\quad$ RECxxxx.csv

$$
0000 \text { - 9999: File No. }
$$

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\checkmark$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | - |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example

- \$u100 = 1 (W) [File number 1] \$u101 = $2(\mathrm{~W})$ [Top line number] \$u102 = $3(\mathrm{~W})$ [Top column number] \$u103 = $2(\mathrm{~W})$ [Number of lines] \$u104 = $3(\mathrm{~W})$ [Number of columns] LD_RECIPESEL \$u300 \$u100

The above program transfers part of the data in the REC0001.csv file to the location starting from \$u300.


## Supplemental remarks

- Attribute setting is required for each CSV file.

- For reading text, whether to convert a null to 20 H (space) or read it as "00" can be selected. For more information, refer to page 4-162.
- Difference between reading one line and reading multiple lines

|  | Reverse Definition of Lines/ Columns |  |  | $\nabla$ Reverse Definition of Lines/Columns |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSV |  |  |  | CSV file |  |  |  |  |
|  |  |  |  | $\begin{gathered} \text { DEC } \\ \text { CHAR } \\ \text { DEC } \end{gathered}$ | 1 2 3 4 |  |  |  |
|  | 1 | A | 100 |  | A | B | C | D |
|  | 2 | B | 200 |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| One line | Reading one line and two columns from top line No. 2 and top column No. 2 |  |  | Reading one line and two columns from top line No. 2 and top column No. 2 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC <br> CHAR <br> DEC | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 |  | A | B | $\rightarrow$ | D |
|  | 2 | B | $\underline{0}$ |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| Two lines | Reading two lines and two columns from top line No. 2 and top column No. 2 |  |  | Reading two lines and two columns from top line No. 2 and top column No. 2 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 | CHAR | A | B | ${ }^{-1}$ | D |
|  | 2 | B | 200 | DEC | 100 | 200 | 300 | 400 |
|  | 3 | $\cdots$ | 30 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |

* Execute reading line by line (specifying multiple lines at one time is not allowed).
- For the V8 series, the result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## LD_RECIPESEL2

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## LD_RECIPESEL2 F0 F1 F2

## Function: Read CSV file (in units of a cell/attribute designation)

This macro command is used to transfer part of the CSV file specified in [F1] in the format of the attribute number in [F2] to the location starting from the address in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
|  | Reverse Definition of Lines/ Columns | $\checkmark$ Reverse Definition of Lines/ Columns |
| F0 | Transfer target address |  |
| F1 | 0000-9999: CSV file number |  |
| F1+1 | 1-32767: Top line number | 1-4096: Top line number |
| F1+2 | 0* - 4096: Top column number | 0* - 4096: Top column number |
| F1+3 | 1-32767: Number of lines | 1-4096: Number of lines |
| F1+4 | 1-4096: Number of columns | 1-4096: Number of columns |
| F2 | 0-255: Attribute number |  |

* Specify "0" if you wish to transfer the record name as well. In that case, check [Record Name + Data] under [Transfer Mode] in the [Attribute Setting] dialog. The number of columns specified in F1+4 includes the cell of the record name.


## CSV file

Storage target: $\backslash$ (access folder)\RECIPE
File name: $\quad$ RECxxxx.csv T000-9999: File number

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.


## Example

- $\$ \mathrm{u} 100=2(\mathrm{~W})$ [File number]
\$u101 = 1 (W) [Top line number]
$\$ \mathrm{Lu} 102=1(\mathrm{~W})$ [Top column number]
\$u103 = 1 (W) [Number of lines]
\$u104 = 5 (W) [Number of columns]
LD_RECIPESEL2 \$u500 \$u100 3
The above program transfers part of the data in the REC0002.csv file in the format of attribute No. 3 to the location starting from \$u500.



## Supplemental remarks

- Attribute setting made in the same format as the CSV file is required.

- For reading text, whether to convert a null to 20 H (space) or read it as " 00 " can be selected. For more information, refer to page 4-162.
- Difference between reading one line and reading multiple lines

|  | Reverse Definition of Lines/ Columns |  |  | $\checkmark$ Reverse Definition of Lines/ Columns |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSV | CSV file |  |  | CSV file |  |  |  |  |
|  | DEC | CHAR | DEC | $\begin{gathered} \text { DEC } \\ \text { CHAR } \\ \text { DEC } \end{gathered}$ | 1 2 3 4 |  |  |  |
|  | 1 | A | 100 |  | A | B | C | D |
|  | 2 | B | 200 |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| One line | Reading one line and two columns from top line No. 2 and top column No. 2 |  |  | Reading one line and two columns from top line No. 2 and top column No. 2 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC <br> CHAR <br> DEC | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 |  | A | B | $\rightarrow$ | D |
|  | 2 | B | $\bigcirc 00$ |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | - 4 | D | 400 |  |  |  |  |  |
| Two lines | Reading two lines and two columns from top line No. 2 and top column No. 2 |  |  | Reading two lines and two columns from top line No. 2 and top column No. 2 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 | CHAR | A | B | ${ }^{\text {r }}$ | D |
|  | 2 | B | 20. | DEC | 100 | 290 | 300 | 400 |
|  | 3 | \% | 301 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
|  |  |  |  | * Exe (spe one | re <br> ying me is | ding multip not a | line by le lin lowe | line s at ). |

- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SV_RECIPE

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $O$ |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## SV_RECIPE F0 F1 F2

## Function: Save to CSV file

This macro command is used to save the data of words starting from the address specified in [F0] to the CSV file in [F2]. The number of the words is specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| F2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :--- | :--- | :--- |
| F0 | Transfer source address |  |
| F1 | $1-4096:$ | Word count |
| F2 | $0000-9999:$ | CSV file number |

## CSV file

Storage target: <br>(access folder)\RECIPE
File name: \RECxxxx.csv
$$
0000 \text { - 9999: File number }
$$

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The $\bullet$ mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\nabla$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | - |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example

- SV_RECIPE \$u500 52

The above program saves the five-word data at \$u500-504 to the REC0002.csv file.


## Supplemental remarks

- Attribute setting is required for each CSV file.

- If the specified CSV file does not exist on the CF card, a new file will be created. Creating the CSV file in advance is not necessary.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SV_RECIPE2

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## SV_RECIPE2 F0 F1 F2 F3

## Function: Save to CSV file (attribute designation)

This macro command is used to save the data of words starting from the address specified in [FO] in the format of the attribute number in [F3] to the CSV file in [F2]. The number of the words is specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ | $\odot$ | $\odot$ |  |
| F1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| F2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| F3 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :--- | :--- | :--- |
| F0 | Transfer source address |  |
| F1 | $1-4096:$ | Word count |
| F2 | $0000-9999:$ | CSV file number |
| F3 | $0-255:$ | Attribute number |

## CSV file

Storage target: <br>(access folder)\RECIPE
File name: $\quad$ RECxxxx.csv

$$
\overline{0000} \text { - 9999: File No. }
$$

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The $\bullet$ mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\checkmark$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | - |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example

- SV_RECIPE2 PLC[D400] 1099993

The above program saves the ten-word data at D400-409 of the PLC1 in the format of attribute No. 3 to the REC9999.csv file.


## Supplemental remarks

- Attribute setting made in the same format as the CSV file is required.

- If the specified CSV file does not exist on the CF card, a new file will be created. Creating the CSV file in advance is not necessary.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SV_RECIPESEL

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## SV_RECIPESEL F0 F1

## Function: Save to CSV file

This macro command is used to save the data at the location starting from the address specified in [F0] to the specified line/column in the CSV file in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |
| :---: | :--- | :--- | :--- | :---: |
|  | $\square$Reverse Definition of Lines/ <br> Columns | $\square$ Reverse Definition of Lines/ <br> Columns |  |  |
| F0 | Transfer source address |  |  |  |
| F1 | $0000-9999: \quad$ CSV file number |  |  |  |
| F1+1 | $1-32767: \quad$ Top line number | $1-4096:$ | Top line number |  |
| F1+2 | $0^{*}-4096: \quad$ Top column number | $0^{\star}-4096:$ | Top column number |  |
| F1+3 | $1-4096: \quad$ Number of lines | $1-4096: \quad$ Number of lines |  |  |
| F1+4 | $1-4096: \quad$ Number of columns | $1-4096: \quad$ Number of columns |  |  |

* Specify "0" if you wish to transfer the record name as well. In that case, check [Record Name + Data] under [Transfer Mode] in the [Attribute Setting] dialog. The number of columns specified in F1+4 includes the cell of the record name.


## CSV file

Storage target: <br>(access folder)\RECIPE
File name:
IRECxxxx.csv
$$
\overline{0000-9999: ~ F i l e ~ N o . ~}
$$

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The $\bullet$ mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\nabla$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | - |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example

- $\$ \mathrm{u} 100=0(\mathrm{~W})$ [File number]
\$u101 = 3 (W) [Top line number]
$\$ \mathrm{u} 102=1(\mathrm{~W})$ [Top column number]
\$u103 = 1 (W) [Number of lines]
\$u104 = $2(\mathrm{~W})$ [Number of columns]
SV_RECIPESEL \$u300 \$u100
The above program saves the data at the location starting from \$u300 to line No. 3 in the REC0000.csv file.



## Supplemental remarks

- Attribute setting is required for each CSV file.

- If the specified CSV file does not exist on the CF card, a new file will be created. Creating the CSV file in advance is not necessary.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SV_RECIPESEL2

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## SV_RECIPESEL2 F0 F1 F2

## Function: Save to CSV file (attribute designation)

This macro command is used to save the data at the location starting from the address specified in [F0] in the format of the attribute number in [F2] to the specified line/column in the CSV file in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
|  | Reverse Definition of Lines/ Columns | $\square$ Reverse Definition of Lines/ Columns |
| F0 | Transfer source address |  |
| F1 | 0000-9999: CSV file number |  |
| F1+1 | 1-32767: Top line number | 1-4096: Top line number |
| F1+2 | 0* - 4096: Top column number | 0* - 4096: Top column number |
| F1+3 | 1-4096: Number of lines | 1-4096: Number of lines |
| F1+4 | 1-4096: Number of columns | 1-4096: Number of columns |
| F2 | 0-255: Attribute number |  |

* Specify "0" if you wish to transfer the record name as well. In that case, check [Record Name + Data] under [Transfer Mode] in the [Attribute Setting] dialog. The number of columns specified in F1+4 includes the cell of the record name.


## CSV file

Storage target: $\backslash$ (access folder)\RECIPE
File name: $\quad$ RECxxxx.csv
O000-9999: File No.

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.


## Example

- \$u100 = $9000(\mathrm{~W}) \quad$ [File number]
\$u101 = $2(\mathrm{~W}) \quad$ [Top line number]
\$u102 = $1(\mathrm{~W}) \quad$ [Top column number]
\$u103 = $1(\mathrm{~W}) \quad$ [Number of lines]
\$u104 = $5(\mathrm{~W}) \quad$ [Number of columns]
SV_RECIPESEL2 \$u300 \$u100 3
The above program saves the data at the location starting from \$u300 in the format of attribute No. 3 to line No. 2 in the REC9000.csv file.



## Supplemental remarks

- Attribute setting made in the same format as the CSV file is required.

- If the specified CSV file does not exist on the CF card, a new file will be created. Creating the CSV file in advance is not necessary.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SET_RECIPEFOLDER SET_RECIPEFOLDER FO

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## Function: Folder designation

This macro command is used to designate the folder storing CSV files in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
| F0 |  |  |
| F0+1 | ASCII code (8 one-byte upper-case alphanumeric characters): <br> F0+2 <br> Access target folder name* |  |
| F0+3 |  |  |

* Text processing (LSB $\rightarrow$ MSB or MSB $\rightarrow$ LSB) for the folder name is determined whether [Follow to the PLC1 setting for the text process in a recipe file.] on the [General Settings] tab window that is displayed by [System Setting] $\rightarrow$ [Unit Setting] is checked or not.


| $\nabla$ Follow to the PLC1 setting for the <br> text process in a recipe file. | $\square$ Follow to the PLC1 setting for the <br> text process in a recipe file. |
| :---: | :---: |
| Text processing specified for the PLC1 | Fixed to "LSB $\rightarrow$ MSB" |

For the V7 series, text processing for the recipe file is performed according to the selection under [Text Process] in the [Detail] tab window in the
[Communication Parameters] dialog ([System Setting] $\rightarrow$
[PLC Communication] $\rightarrow$ [Communication Parameter]).

## Example

- \$u100 = 4154H (W)
$\$ \mathrm{u} 101=4752 \mathrm{H}$ (W)
544152474554 = TARGET
$\$ \mathrm{u} 102=5445 \mathrm{H}(\mathrm{W})$
$\$ \mathrm{~L} 103=0000 \mathrm{H}$ (W)
SET_RECIPEFOLDER \$u100
The above program specifies the folder at $\backslash$ (access folder)\RECIPEITARGET.
- The CHR or STRING macro command will simplify the designation of a folder if it is a fixed name.
- (When text processing is performed according to the setting on the PLC1: use a "CHR" command.) \$u100 = 'TARGET' SET_RECIPEFOLDER \$u100
- (When "LSB $\rightarrow$ MSB" is selected: use a "STRING" command.) \$u100 = ‘TARGET’ (STRING) SET_RECIPEFOLDER \$u100


## Supplemental remarks

- Four consecutive words starting from the address in [F0] are used. Be sure that these words are not already used elsewhere.
- Once the macro command is executed, the effect is maintained until any of the following takes place.
- Turning off the power
- Switching the $V$ series from a state of RUN to STOP ([Main Menu] screen)
- Removing the CF card

Execute the macro command again after any of the above or if you access a CSV file in a different folder.

- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## RD_RECIPE_FILE RD_RECIPE_FILE F0 F1

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Read CSV file

This macro command is used to transfer all data in the CSV file specified in [F1] to the address in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | Transfer target memory |
| F1 | ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name* |
| F1+1 |  |
| F1+2 |  |
| F1+3 |  |

* For details on text processing of the file name, refer to "Supplemental remarks" on Page 4-185.


## CSV file

Storage target: <br>(access folder)\RECIPE<br>(arbitrary folder)
File name: $\quad$ xxxxxxxx.csv
8 one-byte
8 one-byte upper-case alphanumeric characters or less

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\nabla$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square$ <br> Record Name | - |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| V <br> Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example


The above program transfers all data in the PRODUCT1.csv file stored in the TARGET folder to PLC1: D200.

## Supplemental remarks

- Four consecutive words starting from the address in [F1] are used. Be sure that these words are not already used elsewhere.
- If the CSV file specified in [F1] does not exist, a card read error occurs (\$s497 $=16$ ).
- For reading text, whether to convert a null to 20 H (space) or read it as " 00 " can be selected. For more information, refer to page 4-162.
- Text processing (LSB $\rightarrow$ MSB or MSB $\rightarrow$ LSB) for the file name is determined whether [Follow to the PLC1 setting for the text process in a recipe file.] on the [General Settings] tab window that is displayed by [System Setting] $\rightarrow$ [Unit Setting] is checked or not.


| Memory <br> designation | $\square$ Follow to the PLC1 <br> setting for the text <br> process in a recipe file. | $\square$ Follow to the PLC1 <br> setting for the text <br> process in a recipe file. |
| :--- | :--- | :--- |
| Internal memory | Text processing specified <br> for the PLC1 | Fixed to "LSB $\rightarrow$ MSB" |
| PLC 1-8 <br> memory | Text processing specified <br> for the PLC1 | Text processing specified <br> for each PLC |

For the V7 series, text processing for the recipe file is performed according to the selection under [Text Process] in the [Detail] tab window in the [Communication Parameters] dialog ([System Setting] $\rightarrow$ [PLC Communication] $\rightarrow$ [Communication Parameter]).

- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## RD_RECIPE_LINE RD_RECIPE_LINE F0 F1 F2 F3

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Read CSV file (line designation)

This macro command is used to transfer the data of specified lines in the [F1]specified CSV file to the address in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |
| F3 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\square$ Reverse Column | finition of Lines/ | $\checkmark$ Rever Colum | finition of |
| F0 | Transfer target memory |  |  |  |
| F1 | ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name* |  |  |  |
| F1+1 |  |  |  |  |
| F1+2 |  |  |  |  |
| F1+3 |  |  |  |  |
| F2 | 1-32767: | Top line | 1-4096: | Top line |
| F3 | 1-32767: | Final line | 1-4096: | Final line |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## CSV file

Storage target: <br>(access folder)\RECIPE<br>(arbitrary folder)
File name: $\quad$ xxxxxxxxx.csv

$$
8 \text { one-byte upper-case alphanumeric characters or less }
$$

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.


## Example

- $\$ u 100=$ 'TARGET' SET_RECIPEFOLDER \$u100
$\$ \mathrm{~L} 110=5250 \mathrm{H}(\mathrm{W})$
$\$ \mathrm{~L} 111=444 \mathrm{FH}(\mathrm{W})$
$\$ \mathrm{~L} 112=4355 \mathrm{H}(\mathrm{W})$
\$u113 = 3154H (W)
RD_RECIPE_LINE PLC1 [D200] \$u110 33
The above program transfers line No. 3 (record No. 3) data in the PRODUCT1.csv file stored in the TARGET folder to PLC1: D200.


## Supplemental remarks

- Four consecutive words starting from the address in [F1] are used. Be sure that these words are not already used elsewhere.
- If the CSV file specified in [F1] does not exist, a card read error occurs (\$s497 $=16$ ).
- For reading text, whether to convert a null to 20 H (space) or read it as " 00 " can be selected. For more information, refer to page 4-162.
- Difference between reading one line and reading multiple lines

|  | Reverse Definition of Lines/ Columns |  |  | $\square$ Reverse Definition of Lines/ Columns |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSV | CSV file |  |  | CSV file |  |  |  |  |
|  | DE | CHAR DEC |  | DEC <br> CHAR <br> DEC | 1 2 3 4 |  |  |  |
|  |  | A | 100 |  | A | B | C | D |
|  | 2 | B | 200 |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| One line | Reading based on top line No. 2 and final line No. 2 |  |  | Reading based on top line No. 2 and final line No. 2 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC <br> CHAR <br> DEC | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 |  | A | B | C | $\rightarrow$ |
|  | 2 | B | 29 |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| Two lines | Reading based on top line No. 2 and final line No. 3 |  |  | Reading based on top line No. 2 and final line No. 3 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 | CHAR | A |  |  | T |
|  | 2 | 8 | 208 | DEC | 100 | 200 | 360 | 400 |
|  | $\beta$ | C | 309 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
|  |  |  |  | * Exec (spec one | te re <br> ying ne is | ding multip not al | line by le lin lowed | line es at ). |

- For the V8 series, the result of macro execution is stored in $\$$ s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## RD_RECIPE_COLUMN RD_RECIPE_COLUMN FO F1 F2 F3

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Read CSV file (column designation)

This macro command is used to transfer the data of specified columns in the [F1]specified CSV file to the address in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |
| F3 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
|  | Reverse Definition of Lines/ Columns | $\square$ Reverse Definition of Lines/ Columns |
| F0 | Transfer target memory |  |
| F1 | ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name* |  |
| F1+1 |  |  |
| F1+2 |  |  |
| F1+3 |  |  |
| F2 | 0: Column of record name <br> $1-4096:$ Top column of data |  |
| F3 | $0:$ Column of record name <br> $1-4096:$ Final column of data |  |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## CSV file

Storage target: $\backslash$ (access folder)\RECIPE<br>(arbitrary folder)
File name: lxxxxxxxx.csv
8 one-byte upper-case alphanumeric characters or less
The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.


## Example

- $\$ \mathrm{Lu} 100=$ ' TARGET' SET_RECIPEFOLDER \$u100
$\$ \mathrm{~L} 110=5250 \mathrm{H}(\mathrm{W})$
\$u111 = 444FH (W)
$\$ \mathrm{~L} 112=4355 \mathrm{H}(\mathrm{W})$
\$u113 = 3154H (W)
RD_RECIPE_COLUMN PLC1 [D300] \$u110 55
The above program transfers column No. 5 data in the PRODUCT1.csv file stored in the TARGET folder to PLC1: D300.


## Supplemental remarks

- Four consecutive words starting from the address in [F1] are used. Be sure that these words are not already used elsewhere.
- If the CSV file specified in [F1] does not exist, a card read error occurs (\$s497 = 16).
- For reading text, whether to convert a null to 20 H (space) or read it as " 00 " can be selected. For more information, refer to page 4-162.
- Difference between reading one column and reading multiple columns

|  | Reverse Definition of Lines/ Columns |  |  | $\square$ Reverse Definition of Lines/ Columns |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSV |  |  |  | CSV file |  |  |  |  |
|  |  |  |  | $\begin{gathered} \text { DEC } \\ \text { CHAR } \\ \text { DEC } \end{gathered}$ | 1 | 2 | 3 | 4 |
|  | 1 | A | 100 |  | A | B | C | D |
|  | 2 | B | 200 |  | 100 | 200 | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| One line | Reading based on top column No. 2 and final column No. 2 |  |  | Reading based on top column No. 2 and final column No. 2 |  |  |  |  |
|  | DEC | CHAR | DEC |  |  |  |  |  |
|  | 1 | A | 100 | $\begin{gathered} \text { CHAR } \\ \text { DEC } \end{gathered}$ | A | B | C | D |
|  | 2 | B | 200 |  | 100 | $\frac{1}{200}$ | 300 | 400 |
|  | 3 | C | 300 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
| Two lines | Reading based on top column No. 2 and final column No. 3 |  |  | Reading based on top column No. 2 and final column No. 3 |  |  |  |  |
|  | DEC | CHAR | DEC | DEC <br> CHAR <br> DEC | 1 | 2 | ${ }^{3}$ | 4 |
|  | 1 | A | 100 |  | A |  |  | D |
|  | 2 | B | 20 |  | 100 | 200 | 3*0 | 400 |
|  | 3 | ¢ | 390 |  |  |  |  |  |
|  | 4 | D | 400 |  |  |  |  |  |
|  | * Execute reading column by column (specifying multiple columns at one time is not allowed). |  |  |  |  |  |  |  |

- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## WR_RECIPE_FILE WR_RECIPE_FILE FO F1

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Save to CSV file

This macro command is used to save the data at the location starting from the address specified in [F0] to the CSV file in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | Transfer source memory |
| F1 | ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name* |
| F1+1 |  |
| F1+2 |  |
| F1+3 |  |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## CSV file

Storage target: <br>(access folder)\RECIPE<br>(arbitrary folder)
File name: $\quad$ xxxxxxxx.csv
8 one-byte
8 one-byte upper-case alphanumeric characters or less

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\nabla$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | - |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example


The above program overwrites the PRODUCT7.csv file stored in the TARGET folder with the data at the location starting from PLC1: D200.

## Supplemental remarks

- Four consecutive words starting from the address in [F1] are used. Be sure that these words are not already used elsewhere.
- If the CSV file specified in [F1] does not exist, a card read error occurs (\$s497 = 16).
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

WR_RECIPE_LINE WR_RECIPE_LINE F0 F1 F2 F3

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Save to CSV file (line designation)

This macro command is used to save the data at addresses starting from the one specified in [FO] in a specified line, or an additional final line, of the CSV file specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |
| F3 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
|  | Reverse Definition of Lines/ Columns | $\checkmark$ Reverse Definition of Lines/ Columns |
| F0 | Transfer source memory |  |
| F1 | ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name ${ }^{* 1}$ |  |
| F1+1 |  |  |
| F1+2 |  |  |
| F1+3 |  |  |
| F2 | $\begin{array}{ll} \hline 1-32767: & \text { Top line } \\ -1: & \text { Additional final line }{ }^{\star 2} \end{array}$ | 1-4096: Top line |
| F3 | $\begin{array}{ll} \hline 1-32767: & \text { Final line } \\ -1: & \text { Additional final line }{ }^{* 2} \end{array}$ | 1-4096: Final line |

*1 For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.
*2 An additional final line is only saved if " -1 " is set for both F2 and F3.

## CSV file

Storage target: <br>(access folder)\RECIPE<br>(arbitrary folder)
File name: lxxxxxxxx.csv
8 one-byte upper-case alphanumeric characters or less

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The $\bullet$ mark indicates the position of line No. 1 and column No. 1 in a CSV file.


## Example

```
- $u100 = 'TARGET`
    SET_RECIPEFOLDER $u100
    $u110 = 5250H (W)
    $u111 = 444FH (W)
    $u112 = 4355H (W)
    $u113 = 3754H (W)
    WD_RECIPE_LINE PLC1 [D200] $u110 3 3
```

The above program overwrites line No. 3 in the PRODUCT7.csv file stored in the TARGET folder with the data at the location starting from PLC1: D200.

## Supplemental remarks

- Four consecutive words starting from the address in [F1] are used. Be sure that these words are not already used elsewhere.
- If the specified CSV file does not exist, specifying "1" or "-1" for [F2] creates a new file. If $[F 2] \neq 1$, a card read error ( $\$ \mathrm{~s} 497=16$ ) occurs.
However, when [Reverse Definition of Lines/Columns] is checked, use "WR_RECIPE_COLUM" to create a new file.
- When setting "-1" for [F2] and [F3] and adding an additional final line, make sure that the number of lines does not exceed 32767 . The macro will not operate correctly on files with more than 32767 lines.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## WR_RECIPE_COLUMN WR_RECIPE_COLUMN F0 F1 F2 F3

| All V8 models | $O$ |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Save to CSV file (column designation)

This macro command is used to save the data at the location starting from the address in [F0] to the specified column in the F1-specified CSV file.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ |  |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |
| F3 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
|  | $\square$ Reverse Definition of Lines/ Columns | $\square$ Reverse Definition of Lines/ Columns |
| F0 | Transfer source memory |  |
| F1 | ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name* |  |
| F1+1 |  |  |
| F1+2 |  |  |
| F1+3 |  |  |
| F2 | 0: Column of record name <br> $1-4096:$ Top column of data |  |
| F3 | 0: Column of record name <br> $1-4096:$ Final column of data |  |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## CSV file

Storage target: <br>(access folder)\RECIPE<br>(arbitrary folder)
File name: lxxxxxxxx.csv
8 one-byte upper-case alphanumeric characters or less

The designation of the line numbers in a CSV file differs, depending on the options selected in the [Attribute Setting] dialog. The * mark indicates the position of line No. 1 and column No. 1 in a CSV file.

|  | $\square$ Use Title |  |  | $\nabla$ Use Title |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Record Name | * |  |  | Title |  |  |
|  |  |  |  | - |  |  |
|  |  |  |  |  |  |  |
| Record Name | Record | - |  | - | Title |  |
|  |  |  |  | Record | - |  |
|  |  |  |  |  |  |  |

## Example

- \$u100 = 'TARGET' SET_RECIPEFOLDER \$u100
] Not required if SET_FOLDER has already been executed
$\$ \mathrm{~L} 110=5250 \mathrm{H}(\mathrm{W})$
\$u111 = 444FH (W)
$\$ \mathrm{~L} 112=4355 \mathrm{H}(\mathrm{W})$
5052 4F 4455435437 = PRODUCT7
$\$ \mathrm{u} 113=3754 \mathrm{H}$ (W)
(ASCII)
WR_RECIPE_COLUMN PLC1 [D300] \$u110 55
The above program overwrites column No. 5 in the PRODUCT7.csv file stored in the TARGET folder with the data at the location starting from PLC1: D300.


## Supplemental remarks

- Four consecutive words starting from the address in [F1] are used. Be sure that these words are not already used elsewhere.
- If the CSV file specified in [F1] does not exist, a card read error occurs (\$s497 $=16$ ).
- When [Reverse Definition of Lines/Columns] is checked, if [F2] = 1 is specified a new CSV file is created.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## GET_RECIPE_FILEI GET_RECIPE_FILEINFO F0 F1 F2 NFO

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## Function: CSV file information

This macro command is used to store the number of lines/columns of the F1specified CSV file in memory at the address in [F2].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ | $\odot$ | $\odot$ | $\bigcirc$ |
| F1 | $\odot$ | $\odot$ | $\odot$ |  |
| F2 | $\odot$ | $\odot$ | $\odot$ |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | 0: Number of lines <br> 1: Number of columns |
| F1 | 0000 - 9999: CSV file number designation (RECxxxx.CSV) <br> -1 (FFFFH): CSV file name designation (xxxxxxxx.csv) |
| F1+1 | Valid if F1 $=-1$ <br> ASCII code (8 one-byte upper-case alphanumeric characters): CSV file name* |
| F1+2 |  |
| F1+3 |  |
| F1+4 |  |
| F2 | Information storage memory |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## Example

- CSV file number designation
\$u100 = $0(\mathrm{~W}) \quad$ [Line]
\$u200 = $1(\mathrm{~W}) \quad$ [File number]

GET_RECIPE_FILEINFO \$u100 \$u200 \$u300
The above program stores the number of lines of the REC0001.CSV file located in the RECIPE folder in memory at $\$ u 300$.

- CSV file name designation
$\$ \mathrm{4} 00$ = 'TEST'
SET_RECIPEFOLDER \$u400
7 Not required if SET_FOLDER has
already been executed
\$u100 = 1 (W) [Column]
$\$ \mathrm{~L} 200=-1$ (W) [File name]
\$u201 = 'SUBDATA' [File name]
GET_RECIPE_FILEINFO \$u100 \$u200 \$u300
The above program reads the number of columns in the SUBDATA.CSV file located in the TEST folder from the attribute setting and stores it in memory at $\$ 4300$.


## Supplemental remarks

- When a CSV file name is specified, the next four consecutive words starting from the address in $[F 1+1]$ are used. Be sure that these words are not already used elsewhere.
- If [Use Title] is checked in the [Attribute Setting] dialog, the number of lines to be stored does not include the line of the title.
- If [Use Record Name] is checked in the [Attribute Setting] dialog, the number of columns to be stored does not include the column of the record name.
- In the event of storing the number of columns with [Reverse Definition of Lines/Columns] unchecked or storing the number of lines with [Reverse Definition of Lines/Columns] checked in the [Attribute Setting] dialog, the data is stored based on the readout from the dialog.
- $\$ \mathrm{~s} 990$ stores the result of macro execution.

| Code (DEC) | Contents |
| :---: | :--- |
| 0 | Normal |
| 1 | F0 parameter invalid |
| 2 | F1 parameter invalid |
| 3 | F2 parameter invalid |
| 4 | F3 parameter invalid |
| 5 | Error found during accessing the specified file |
| 6 | Unable to process the specified file |

- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.18 CF Card (Sampling)

SMPL_BAK SMPL_BAK F0 . . . . . . . . . . . . . . . . . . . . . . With V8/TELLUS3

| All V8 models | O |
| :---: | :---: |
| All V7 models | O |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $O$ |
| TELLUS3 HMI | $O$ |
| TELLUS2 HMI | $O$ |

## Function: Save backup (bin file)

This macro command is used to create a backup file for the sampling data in the buffer number specified in [F0] and save it in a "year, month and date" folder in the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  | Value |
| :--- | :--- | :--- |
| F0 | $0-11:$ Buffer number |  |

File

Storage destination:
File name:
laccess folderlSAMPLEl(year and month folder)<br>(year, month and date folder) ISMPxx_xx.bin
$$
\begin{aligned}
& T_{00} \text { - 99: Backup times } \\
& 00-11: \text { Buffer number }
\end{aligned}
$$

## Example

- SMPL_BAK 2

The above program creates a backup file for buffering area 2 (SMP0002.bin) on September 12, 2007.
 SMP02_00.bin SMP02_01.bin SMP02_02.bin

## Supplemental remarks

- The macro command is valid when [CF Card] or [Memory Card] is selected for [Secondary storage target] in the [Buffering Area Setting] $\rightarrow$ [Store Target] tab window.

- Data stored in a primary storage is saved in a backup file after output.
- When data is backed up for the hundredth time under the same date, the last (99th) backed up data is overwritten to save it.
- The result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

- The action to be taken associated with an insufficient available space on the CF card is selectable in the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]).



## SMPL_BAK F0 . . . . . . . . . . . . . . . With V7IV608CH/TELLUS2

## Function: Save backup (bin file)

This macro command is used to make a backup file of the buffer No. [FO] sampling data and save the file to the year-month-day folder placed on the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
| F0 | $0-11 \quad$ : Buffer number |  |

## File

Storage target: laccess folder\SAMPLElyear-month-day folder File name : \SMP xxxx.bin


## Example

- SMPL_BAK 2

The above program creates a backup file of buffering area 2 (SMP0002.bin) on September 12, 2007.


## Supplemental remarks

- The macro command is valid when [CF Card] is checked under [Store Target] in the [Buffering Area Setting] dialog ([System Setting] $\rightarrow$ [Buffering Area Setting]).
- When a cache is in use, output from the cache is produced before the backup is saved.
- If the same year-month-day folder already exists, an additional folder named "(date)- $n$ " (" $n$ " in the range of 1 to 9 and $A$ to $Z$, to be allocated in sequence) will be created.
- If there is already a folder named "(date)-Z", the existing folders from the first date folder will be overwritten.
- The action to be taken associated with an insufficient available space on the CF card is selectable in the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]). (V7 series only)

SMPL_CSV

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $\bigcirc$ |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

SMPL_CSV F0. . . . . . . . . . . . . . . . . . . . . . . With V8/TELLUS3

## Function: Create CSV file

This macro command is used to convert a sampling data in the buffer number specified in [FO] to the CSV format and save it in a "SAMPLE" folder in the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  | $\bigcirc$ |  |
| O : Setting enabled (indirect designation disabled) <br> ○: Setting enabled (indirect designation enabled) |  |  |  |  |

Setting range

## File

Storage target: <br>(Access folder)\SAMPLE
File name: ISMPxxxx.csv $\prod_{0000-0011: ~ B u f f e r ~ n u m b e r ~}^{\text {- }}$

## Example

- SMPL_CSV 1

The above program converts the data in buffering area 1 to the CSV format (SMP0001.CSV) and saves it.

When [SRAM] is selected as the primary storage and [None] is selected for the secondary storage:


When [SRAM] is selected as the primary storage and [CF Card] is selected for the secondary storage:


## Supplemental remarks

- When [CF Card] or [Memory Card] is selected for the secondary storage, data stored in a primary storage is saved as a CSV-format file after output.
- A [CSV format] setting is required for each buffer number.

- If the same file already exists, it will be overwritten.
- If the buffer is empty, no CSV file will be created.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

SMPL_CSV F0. . . . . . . . . . . . . . . . With V7IV608CH/TELLUS2

## Function: Create CSV file

This macro command is used to convert the buffer No. [FO] sampling data to the CSV format and save the file to the SAMPLE folder placed on the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | $0-11:$ Buffer number |

## File

Storage target: laccess folderlSAMPLE
File name:


## Example

- SMPL_CSV 1

The above program converts the data of buffering area 1 to the CSV format (SMP0001.CSV) and saves the file.

Store Target: SRAM


Store Target: CF Card


## Supplemental remarks

- The macro command is valid when [SRAM/CF Card] is checked under [Store Target] in the [Buffering Area Setting] dialog ([System Setting] $\rightarrow$ [Buffering Area Setting]).
- Attribute setting is required for each buffer number.
- If the specified file already exists, it will be overwritten.
- If the buffer is empty, no CSV file will be created.

SMPL_CSV2

| All V8 models | O |
| :---: | :---: |
| All V7 models |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | O |
| TELLUS2 HMI |  |

## SMPL_CSV2 F0 F1

## Function: Create CSV file (file name designation)

This macro command is used to convert the buffering area No. [FO] sampling data to the CSV format under the name [F1] and save the file in the SAMPLE folder placed on the CF card. If the specified file does not exist, a new file will be created.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  | O |
| F1 | $\bigcirc$ |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | $0-11:$ Buffering area number |
| F1 | ASCII code (64 one-byte uppercase alphanumerics at the maximum): <br> CSV file name |

## File

Storage target: laccess folderlSAMPLE
File name: xxxxxxxx.csv

## Example

- The file named "SEISAN.CSV" is created from the data in buffering area No. 1. \$u00100 = 'SEISAN' (STRING)
SMPL_CSV2 1 \$u00100


In the case of [Primary storage target: SRAM] and [Secondary storage target: None]:


In the case of [Primary storage target: SRAM] and [Secondary storage target: CF Card]:


* If [ Insert/Overwrite together with STRING Command] is checked in the [Memory Setting] or [Macro Editing Support] dialog, the macro command STRING can also be registered.
For more information on STRING, refer to page 4-46.


## Supplementary remarks

- When the CF card or the memory card is selected as the secondary storage target, the data saved to the primary storage target is output first and then saved as a CSV file.
- The [CSV format] setting must be made for each buffer number.

- If the specified file already exists, it will be overwritten.
- If the buffer is empty, no CSV file will be created.
- A full pathname can be specified for [F1].
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Restrictions

- These symbols, []], [/], [:], [*], [?], ["], [<], [>] and [[], are not usable for a file name.

SMPL_SAVE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $\bigcirc$ |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

SMPL SAVE .With V8/TELLUS3

## Function: Save data stored in the primary storage

This macro command is used to store the sampling data stored in a primary storage (DRAM/SRAM) in a medium (CF card / memory card) serving as the secondary storage, at any required timing.

File
Storage target: \access folder\SAMPLE
File name: $\quad$ SSMPxxxx.bin


## Supplemental remarks

- The macro command is valid when [CF Card] or [Memory Card] is selected for [Secondary storage target] in the [Buffering Area Setting] $\rightarrow$ [Store Target] tab window.

- Data stored in a primary storage is saved in a backup file after output.
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SMPL_SAVE. . . . . . . . . . . . . . . . . .With V7IV608CH/TELLUS2

## Function: Save cached data

This macro command is used to save the sampling data in the cache to the CF card at the desired set timing.

## File

Storage target: laccess folderlSAMPLE
File name: ISMPxxxx.bin


## Supplemental remarks

- This macro command is valid on the conditions that [Store Target: CF Card] is checked in the [Buffering Area Setting] dialog and [Use Cache] is checked in the [CF Card] dialog (both dialogs are accessible from [System Setting]).


SMPLCSV_BAK

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

SMPLCSV_BAK F0........................ . . . With V8/TELLUS3

## Function: Save backup (CSV file)

This macro command is used to convert a sampling data in the buffer number specified in [FO] to the CSV format and save it in a "year, month and date" folder in the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  | $\bigcirc$ |  |
| O : Setting enabled (indirect designation disabled) <br> ○: Setting enabled (indirect designation enabled) |  |  |  |  |

Setting range

| Memory |  | Value |
| :---: | :---: | :---: |
| F0 | $0-11:$ Buffer number |  |

## File

Storage destination: laccess folderlSAMPLEI(year and month folder)<br>(yearmonth and date folder)
File name:

ISMPxx_xx.csv


00-11: Buffer number

## Example

- SMPLCSV_BAK 1

The above program creates a CSV file for buffering area 1 (SMP0001.bin) on September 12, 2007.
When [SRAM] is selected as the primary storage and [None] is selected for the secondary storage:


When [SRAM] is selected as the primary storage and [CF Card] is selected for the secondary storage:



## Supplemental remarks

- When [CF Card] or [Memory Card] is selected for the secondary storage, data stored in a primary storage is saved as a CSV-format file after output.
- A [CSV format] setting is required for each buffer number.

- When data is backed up for the hundredth time under the same date, the last (99th) backed up data is overwritten to save it.
- If the buffer is empty, no CSV file will be created.
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

- The action to be taken associated with an insufficient available space on the CF card is selectable in the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]).



## SMPLCSV_BAK F0. . . . . . . . . . . . . With V7/V608CH/TELLUS2

## Function: Save backup (CSV file)

This macro command is used to convert the buffer No. [FO] sampling data to the CSV format and save the file to the year-month-day folder placed on the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

| Memory | Value |
| :---: | :--- |
| F0 | $0-11:$ Buffer number |

## File

Storage target: laccess folderlSAMPLElyear-month-day folder
File name: \SMP xxxx.csv


## Example

- SMPLCSV_BAK 1

The above program creates the CSV file of buffering area 1 (SMP0001.bin) in the year-month-day folder on September 12, 2007.

Store Target: SRAM


Store Target: CF Card


## Supplemental remarks

- The macro command is valid when [SRAM/CF Card] is checked under [Store Target] in the [Buffering Area Setting] dialog ([System Setting] $\rightarrow$ [Buffering Area Setting]).
- Attribute setting is required for each buffer number.
- If the same year-month-day folder already exists, an additional folder named "(date)- $n$ " (" $n$ " in the range of 1 to 9 and $A$ to $Z$, to be allocated in sequence) will be created.
- If there is already a folder named "(date)-Z", the existing folders from the first date folder will be overwritten.
- If the buffer is empty, no CSV file will be created.
- The action to be taken associated with an insufficient available space on the CF card is selectable in the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]). (V7 series only)



## SMPLCSV_BAK2 SMPL_CSVBAK2

| All V8 models | O |
| :---: | :---: |
| All V7 models |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | O |
| TELLUS2 HMI |  |

## Function: Create CSV backup file (file name designation)

This macro command is used to convert the buffering area No. [FO] sampling data to the CSV format under the name [F1] and save the file in the year-month-day folder in the SAMPLE folder placed on the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  | $\bigcirc$ |
| F1 | $\odot$ |  |  |  |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
Setting range

|  | Value |
| :---: | :---: |
| F0 | $0-11:$ Buffering area number |
| F1 | ASCII code (64 one-byte uppercase alphanumerics at the maximum): <br> CSV file name |

## File

Storage target: laccess folder\SAMPLElyear-month folderlyear-month-day folder File name: $\quad$ xxxxxxxx _ xx.csv


## Example

- A CSV file is created for buffering area No. 1 backup.

February 14, 2009, file name "SEISAN.CSV"
\$u00100 = ‘SEISAN’ (STRING)
SMPL_CSVBAK2 1 \$u00100


* If [ $\square$ Insert/Overwrite together with STRING Command] is checked in the [Memory Setting] or [Macro Editing Support] dialog, the macro command STRING can also be registered.
For more information on STRING, refer to page 4-46.
In the case of [Primary storage target: SRAM] and [Secondary storage target: None]:


In the case of [Primary storage target: SRAM] and [Secondary storage target: CF Card]:


## Supplemental remarks

- When the CF card or the memory card is selected as the secondary storage target, the data saved to the primary storage target is output first and then saved as a CSV file.
- The [CSV format] setting must be made for each buffer number. (Refer to page 4-206.)
- If backup is repeated more than 100 times for a file given the same date, the final 99th backup file will be overwritten.
- If the buffer is empty, no CSV file will be created.
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |

- The action to be taken associated with an insufficient available space on the CF card is selectable in the [General Settings] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]).



## Restrictions

- These symbols, [1], [/], [:], [*], [?], ["], [<], [>] and [[], are not usable for a file name.


### 4.19 CF Card (Others)

## HDCOPY

| All V8 models | ○ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $\bigcirc$ |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## HDCOPY

## Function: Hardcopy

This macro command is used to save the image of the screen displayed at the time of the macro execution to the CF card.

## Storage target

Storage target: laccess folderlHDCOPY
File name: $\quad$ UHDxxxx.jpg (V Series : 64k-/32k-/128-color display) IHDxxxx.bin (V Series : 128-color display)
IHDxxxx.bmp (TELLUS)


## Supplemental remarks

- One file saves one screen. If a screen file you wish to save already exists in the CF card, the file will be overwritten.
- For the V series with 128 -color display, the option to select the file format is provided. The file format can be selected in the [CF Card] dialog.
To go to the option [ $\square$ Store HDCOPY Macro in JPEG Format], select [CF Card Setting] from the [System Setting] menu.


Unchecked:
The image is saved as a BIN file.
When using the file as the image data, convert it to a bitmap file with the CF card manager.
Checked:
The image is saved as a JPEG file.

- For the V8 series, the result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Restrictions

The superimposed image cannot be transparent.

## HDCOPY2

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## HDCOPY2 F0

## Function: Hardcopy

This macro command is used to save the image of the screen displayed at the time of the macro execution with the backup number specified in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :--- |
| F0 | $0-99:$ Backup number |

## Storage target

Storage target: $\backslash$ (access folder)\HDCOPY
File name: $\quad$ IHDxxx-yy.jpg (V Series : 64k-/32k-/128-color display)
lHDxxx~yy.bin (V Series : 128-color display)
lHDxxx~yy.bmp (TELLUS)


000-999: Screen number (Screen Nos. 1000-1023 invalid)

## Supplemental remarks

- With the use of backup numbers, a maximum of 100 hardcopy images can be saved per screen. You can, therefore, view time-series variations in these images.
- For the V series with 128 -color display, the option to select the file format is provided. The file format can be selected in the [CF Card] dialog. Refer to page 4-215.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Restrictions

The superimposed image cannot be transparent.

## HDCOPY3

| All V8 models | O |
| :---: | :---: |
| All V7 models |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | O |
| TELLUS2 HMI |  |

## HDCOPY3

## Function: Hardcopy (file name designation)

This macro command is used to save the screen image (JPEG) displayed at the time of the macro execution, under the file name [F0], to the CF card.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | ASCII code (64 one-byte uppercase alphanumerics at the maximum): |
|  | CSV file name |

Storage target: laccess folderlHDCOPY


## Example

- The file named "SCREEN10.JPG" is created.
$\$ 400100$ = ‘SCREEN10’ (STRING)
HDCOPY3 \$u00100
LDesignation of a file name
* If [ $\square$ Insert/Overwrite together with STRING Command] is checked in the [Memory Setting] or [Macro Editing Support] dialog, the macro command STRING can also be registered. For more information on STRING, refer to page 4-46.


## Supplemental remarks

- One file saves one screen. If a screen file you wish to save already exists on the CF card, the file will be overwritten.
- If 128 -color display is selected for the V8 series, the format of the file to be stored can be selected. When selecting a file format, click [System Setting] $\rightarrow$ [CF Card Setting] and go to [ $\square$ Store HDCOPY Macro in JPEG Format]*.
* If this option is unchecked, the BIN format is adopted for file saving. For using a BIN file as image data, conversion into bitmap by the CF Card Manager is required.
- A full pathname can be specified for [FO].
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## Restrictions

- These symbols, []], [/], [:], [*], [?], ["], [<], [>] and []], are not usable for a file name.
- The superimposed image cannot be transparent.


## SET_DRIVE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SET_DRIVE FO

## Function: Select drive

This macro command is used to select the CF card drive when the CF card is accessed by a macro command.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| FO | Drive name specification* |
|  | A: USB-FDD drive |
|  | B: (Not used) |
|  | C: Built-in CF card drive |
|  | D: Memory drive connected to a USB port |

* The drive name must be followed by a colon.

For details on text processing of the drive name, refer to "Supplemental remarks" on page 4-185.

## Example

- \$u0010 = 'D:'

SET_DRIVE \$u0010
The above program switches access to the D drive (memory drive connected to a USB port).

## Supplemental remarks

- If the drive name specification is illegal, no operation takes place.
- For the V8 series, the result of macro execution is stored in \$s1062. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

- A drive change due to this macro command occurs only when any recipe macro command is executed.
No drive change will be made for sampling data storage and macro commands other than that which is recipe-related.
- After the drive has been changed with this command, files under the "access folder name" set with [System Setting] $\rightarrow$ [CF Card Setting] are accessed. To change the folder to be accessed for a recipe-related macro, use a "SET_RECIPEFOLDER" command (page 4-182).


## COPY_FILE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## COPY_FILE F0 F1

## Function: Copy file

This macro command is used to copy the file specified in [FO] to the file specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| F1 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
○: Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | Full path name of the copy source* |
| F1 | Full path name of the copy destination ${ }^{\star}$ |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## Example

- Operation 1

The program below copies "C:IDAT0000\RECIPElabc.csv" to "D:IDAT0000\RECIPElabc.csv".

- \$u00100 = 'C:IDAT0000\RECIPElabc.csv’ \$u00200 = 'D:IDAT0000\RECIPEl' COPY_FILE \$u00100 \$u00200
(C drive:) (D drive:)

- Operation 2

The program below copies all files stored in "C:IDAT0000\RECIPEl" to "D:IDAT0000\RECIPEl".

- $\$ \mathbf{0 0 0 1 0 0}=$ ' 'C:IDAT0000\RECIPEl*.*' $\$ 400200$ = 'D:IDAT0000\RECIPEl' COPY_FILE \$u00100 \$u00200



## Supplemental remarks

- When an asterisk "*" is specified for the copy source filename (F0) or extension name, all of the files or files with all extensions are copied. The contents of subfolders are also copied.
- If the filename of the copy destination (F1) is omitted, the data is copied to the same filename.
- If the full path name is illegal, no operation takes place.
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## MOVE_FILE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## MOVE_FILE F0 F1 F2

## Function: Move file

This macro command is used to move the file or folder [F0] to the path [F1]. File renaming is also possible.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| F1 | O |  |  |  |
| F2 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :--- | :--- |
| F0 | Source full pathname <br> (within 255 alphanumerics)* $^{c}$ | Drive designation <br> A: USB-FDD drive <br> B: (not used) |
| F1 | Target full pathname <br> (within 255 alphanumerics)* | C: Built-in CF card drive <br> D: Memory connected to USB port |
| F2 | 0 fixed |  |

* For details on text processing of the file name, refer to "Supplemental remarks" on page 4-185.


## Example

- Movement from "C:IDAT0000\RECIPEIREC0000.csv" to "C:IDAT0000\RECIPEISEISANlabc.csv": $\$ u 00100$ = 'C:IDAT0000\RECIPEIREC0000.csv’
$\$ u 00200=$ 'C:IDAT0000\RECIPEISEISANlabc.csv' MOVE_FILE \$u00100 \$u00200
(Drive C:)

(Drive C:)

* The file "REC0000.csv" is deleted.


## Supplemental remarks

- If an illegal full pathname is specified, this macro command does not work. An error will result.
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

- In the case of a read-only file movement between drives, the file is copied to the target location, and the file at the original location is not deleted.
- A folder to be moved is allowed to contain a maximum of 5 hierarchical levels under the folder. If files or folders at further lower levels exist under the folder, the folder and the files/folders placed under it are copied to the target location, but those at the original location are not deleted.


## Restrictions

- Use alphanumerics to specify full pathnames as the source and the target. If any characters other than alphanumerics are used, the function of this macro command is not assured.
- Wildcard characters (such as "*" and "?") cannot be used for full pathnames as the source and the target.


## READ_FILE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## READ_FILE F0 F1 F2 F3

## Function: Read universal file

This macro command is used to read the file [FO] in binary format and to store the obtained data in memory [F1] and after.
It is also possible to acquire the size of the file [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | O |  |  |  |
| F3 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  | Remarks |
| :---: | :--- | :--- | :--- |
|  | File read |  |  |

$: \leftarrow \vee$ series (return data)

## Example

- File read

The file "ABC.DAT" is read from its 11th byte by 512 bytes into $\$ \mathbf{1 0 0 0 -}$ \$u1255.

| $\$ u 00100=$ 'C:IDAT0000\ABC\ABC.DAT' | [Source full pathname] |
| :--- | :--- |
| $\$ u 00200=512(D)$ | [Size] |
| $\$ u 00202=10(D)$ | $[$ Offset $]$ |
| $\$ u 00204=0(W)$ | $[0$ fixed $]$ |
| READ_FILE $\$ u 00100 \$$ u01000 \$u00200 $\$$ \$u00300 |  |

- File size acquisition

The size of the file "ABC.DAT" is read into \$u300.
$\$ u 00100=$ 'C:IDAT0000\ABC\ABC.DAT' [Source full pathname]
$\$ \mathrm{Lu00200}=0$ (D) [0 fixed]
$\$ \mathrm{Lu00202}=0$ (D) [0 fixed]
$\$ \mathrm{Lu} 00204$ = 0 (W) [0 fixed]
READ_FILE \$u00100 \$u01000 \$u00200 \$u00300

## Supplemental remarks

- If any characters other than alphanumerics are used to specify a source full pathname, this macro command may not work normally. Be sure to use alphanumerics.
- Wildcard characters (such as "*" and "?") cannot be used for a full pathname as the source.
- If the file specified as the source does not exist, an error will result.
- If an illegal full pathname is specified, this macro command does not work. An error will result.
- In the event of an error during file reading, the data having been read is stored in memory. However, the size of the data does not affect the successfully read data size in [F3] and [F3+1].
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## WRITE_FILE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## WRITE_FILE F0 F1 F2

## Function: Write to universal file

This macro command is used to write the data from memory [F1] and after in binary format to the file [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | O |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
Setting range


## Example

- New creation

The 512 bytes of data in \$u1000-\$u1255 is written to the new file "ABC.DAT" created in the folder "ABC".
$\$ 400100=$ 'C:IDAT0000\ABC\ABC.DAT'
[Target full pathname]
$\$ \mathrm{Lu} 0200=0(\mathrm{~W})$
$\$ \mathrm{u} 00201=512$ (D)
$\$ \mathrm{u} 00203$ = 0 (D)
$\$ \mathrm{Lu} 0205=0(\mathrm{~W})$
WRITE_FILE \$u00100 \$u01000 \$u00200

- Overwriting

The 33rd byte and after in the existing file "ABC.DAT" is overwritten with the 16 bytes of data in \$u1000-\$u1007.

| $\$ u 00100=$ 'C:IDAT0000\ABC\ABC.DAT' | [Target full pathname] |
| :--- | :--- |
| $\$ u 00200=1(W)$ | $[1:$ Overwriting $]$ |
| $\$ u 00201=16(D)$ | $[$ Size $]$ |
| $\$ u 00203=32(D)$ | $[$ Offset $]$ |
| $\$ u 00205=0(W)$ | $[0$ fixed $]$ |
| WRITE_FILE \$u00100 \$u01000 \$u00200 |  |

- Addition

The 512 bytes of data in $\$ \mathbf{1 0 0 0}$ - $\$ \mathrm{u} 1255$ is added to the existing file "ABC.DAT".

| $\$$ u00100 $=$ 'C:IDAT0000\ABC\ABC.DAT' | [Target full pathname] |
| :--- | :--- |
| $\$ u 00200=2(W)$ | $[2:$ Addition $]$ |
| $\$ u 00201=512(D)$ | $[$ Size $]$ |
| $\$ u 00203=0(D)$ | $[0$ fixed $]$ |
| $\$ u 00205=0(W)$ | $[0$ fixed $]$ |
| WRITE_FILE \$u00100 \$u01000 \$u00200 |  |

## Supplemental remarks

- If the name of a new file you intend to create is already used, delete the existing file first and create a new file.
- If the size specified with $[F 2+1]$ and $[F 2+2]$ is zero for a new file, an empty file will be created.
- If the file you specified for overwriting or data addition does not exist, an error will result.
- Wildcard characters (such as "*" and "?") cannot be used for a full pathname as the target, to which data is written.
- If an illegal full pathname is specified, this macro command does not work. An error will result.
- In the event of an error during writing to a file, the data having been written remains in the file.
- The result of macro execution is stored in \$s1062.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

### 4.20 Real No. Arithmetical Operation

F_ADD(+)

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

F0 = F1 + F2 (F)

## Function: Real number addition

This macro command is used to write the result of [F1] real number data plus [F2] real number data to [FO].

DWORD

| $F 1+1$ | F1 |
| :---: | :---: |
| $+\quad \mathrm{F} 2+1$ | F 2 |
| $\mathrm{~F} 0+1$ | F 0 |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\odot$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 | Value |
| F1 |  |
| F2 |  |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

## F_SUB(-) <br> F0 = F1-F2 (F)

## Function: Real number subtraction

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

This macro command is used to write the result of [F1] real number data minus [F2] real number data to [F0].

DWORD

| $F 1+1$ | $F 1$ |
| ---: | ---: |
| - | $F 2+1$ |
|  | $F 2$ |
| $F 0+1$ | $F 0$ |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 |  |
| $y n$ | F1 |
| F2 |  |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

## F_MUL(X)

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## F0 $\times$ F2 (F)

## Function: Real number multiplication

This macro command is used to write the result of [F1] real number data multiplied by [F2] real number data to [F0].

## DWORD

| F1+1 | F1 |
| :---: | :---: |
| F2+1 | F2 |
| F0+1 | F0 |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | ๑ |  |  |  |
| F1 | $\bigcirc$ |  |  | $\bigcirc$ |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 | Value |
| F1 |  |
| F2 |  |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

## F_DIV(I)

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## F0 = F1 / F2 (F)

## Function: Real number division

This macro command is used to write the result of [F1] real number data divided by [F2] real number data to [F0].

DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  | $\bigcirc$ |
| F2 | $\odot$ |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :---: |
| F0 |  |
| F1 | IEEE 32-bitue |
| F2 |  |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| 3 | Calculation operation error |
| -1 | Execution error |

### 4.21 Real No. Statistics

F_SUM

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

F0 = F_SUM (F1 C:F2) (F)

## Function: Sum of real number data

This macro command is used to sum the real number data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].

DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | ○ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |
| F2 | $0-512$ |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

## F_AVG

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## F0 = F_AVG (F1 C:F2) (F)

## Function: Average of real number data

This macro command is used to average the real number data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].

DWORD


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |
| F2 | $0-512$ |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

F_MAX

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

FO = F_MAX (F1 C:F2) (F)

## Function: Maximum of real number data

This macro command is used to find the maximum of the real number data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].

DWORD


Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\odot$ |  |  |  |
| F1 | $\odot$ |  |  |  |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |
| F2 | $0-512$ |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |



F0 = F_MIN (F1 C:F2) (F)

## Function: Minimum of real number data

This macro command is used to find the minimum of the real number data at the location starting from the address specified in [F1] and write the result to [F0]. The data count is specified in [F2].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | $\bigcirc$ |  |  |  |
| F1 | $\bigcirc$ |  |  |  |
| F2 | $\bigcirc$ |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | IEEE 32-bit single precision real number |
| F1 |  |
| F2 | $0-512$ |

## Supplemental remarks

- For more information on the IEEE 32-bit single precision real numbers, refer to the V8 Series Reference Manual.
- For the V8 series, the result of macro execution is stored in \$s1056. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| 1 | Overflow |
| 2 | Underflow |
| -1 | Execution error |

### 4.22 Others

## ;(Comment) ; (Comment)

All models $\quad \bigcirc$

## Function: Comment

This is treated as a comment line. No command processing is required.

## BRIGHT

| V815X | $\bigcirc$ |
| :---: | :---: |
| V812S | $\bigcirc$ |
| V810S | $\bigcirc$ |
| V810T | $\bigcirc$ |
| V810C | $\bigcirc$ |
| V808S | $\bigcirc$ |
| V808C | $\bigcirc$ |
| V806T | $\bigcirc$ |
| V806C |  |
| V806M |  |
| V808CH | O* |
| V715X | $\bigcirc$ |
| V712S | $\bigcirc$ |
| V710S | $\bigcirc$ |
| V710T | $\bigcirc$ |
| V710C | $\bigcirc$ |
| V708S | $\bigcirc$ |
| V708C |  |
| V706T | $\bigcirc$ |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## BRIGHT FO

## Function: Brightness adjustment

This command is used to change the brightness of the TFT display to the level specified in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |
| :---: | :---: | :--- | :---: | :--- |
|  | F0 | $0:$ | Vright | $0:$ |
|  | $\vdots$ |  | Dark |  |
|  | $127:$ | Dark | $\vdots$ |  |
|  |  |  | $127:$ | Bright |

## Supplemental remarks

- With the V7 or V8 series, the current brightness is output to $\$ s 956$.

With the model V606e, however, the output mentioned above is not available.

- When the macro command is executed, communication will pause for several hundred milliseconds to allow for saving the setting value to the FROM. Avoid the frequent use of the macro command.
- Continued use at a low brightness will somewhat shorten the backlight life.
- If MONITOUCH set to a low brightness is turned off, the backlight may not light up at the next power-on.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

* For the model V808CH, this macro command is valid for the hardware version "b" and later and the system program version 1.670 and later.


## GET_MSGBLK

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## GET_MSGBLK F0 F1

## Function: Message acquisition

This macro command is used to store the [F1]-specified message (text) in [F0] memory using ASCII/shifted JIS codes.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| F1 | O |  |  | $\bigcirc$ |

○: Setting enabled (indirect designation disabled) © : Setting enabled (indirect designation enabled)

## Setting range

|  |  | Value |
| :--- | :--- | :--- |
| F0 | Storage memory |  |
| F1 | $0-32767:$ Message No. |  |

## Example

- \$u00050 = 256 (W)

GET_MSGBLK \$u00100 \$u00050


The above program stores message No. 256 (= GNo. 1 and line No. 0) in memory at \$u100 and after using shifted JIS codes.

## Supplemental remarks

- Regardless of the [Text Process] setting on the [Communication Setting] tab window in the [Device Connection Setting] dialog for PLC1, the data is stored in memory in the [LSB $\rightarrow$ MSB] sequence.
- A null code is added to the end. Even-number-byte text thereby uses one extra word.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## PLC_ULR

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## PLC_ULR F0 F1

## Function: Read user log

This macro command is used to read the user log of the PLC with the port number / CPU number specified in [F0] of the PLC1 into the address specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  |  |
| F1 | O |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  | Value |  | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | F0 | Higherorder | 01-1F: Port number | Setting required only for 1:n connection |
|  |  | Lowerorder | 00 : CPU No. 1 <br> 01 : CPU No. 2 <br> 02 : CPU No. 3 <br> 03 : CPU No. 4 |  |
|  | F0+1 | $\begin{aligned} & -1: \\ & 0: \\ & 1-63: \end{aligned}$ | Reading the number of user log registrations <br> Reading the most recent user log Reading user log No. n |  |
|  | F1 | Number of registrations (decimal) |  | Stored also in the special register Z105 |
| $\begin{aligned} & \text { 즐 } \\ & \text { © } \\ & \text { ס } \end{aligned}$ | F1 | 0: Normal <br> -1: Error |  | " -1 " to be stored if no data exists in the user log specified in FO or a communication error occurs |
|  | F1+1 | Year (ASCII) |  |  |
|  | F1+2 | Month (ASCII) |  |  |
|  | F1+3 | Day (ASCII) |  |  |
|  | F1+4 | Hour (ASCII) |  |  |
|  | F1+5 | Minute (ASCII) |  |  |
|  | F1+6 | Second (ASCII) |  |  |
|  | F1+7 | Main code (decimal) |  |  |
|  | F1+8 | Sub-code (decimal) |  |  |

$: \leftarrow \mathrm{V}$ series (Return data)

## Example

If a user log reading results in "05/10/19 $11: 20: 34+1+23$ ", its format for storage is as the following:

|  | Storage format |
| :---: | :---: |
| m+0 | 0 |
| m+1 | 3530HEX (= 05DEC) |
| m+2 | 3031HEX ( $=10 \mathrm{DEC}$ ) |
| m+3 | 3931HEX (= 19DEC) |
| m+4 | $3131 \mathrm{HEX} \mathrm{(=} \mathrm{11DEC)}$ |
| m+5 | 3032HEX ( $=20 \mathrm{DEC}$ ) |
| m+6 | 3433HEX ( $=34 \mathrm{DEC}$ ) |
| m+7 | 1DEC |
| m+8 | 23DEC |

## Supplemental remarks

- The macro command is valid only when Yokogawa's FA-M3xxx is selected as the PLC1.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## RECONNECT

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## RECONNECT FO

## Function: Multi-drop reconnection (PLC1)

This macro command is used to establish a connection again to the ports specified in [F0] or the sub ports specified in [F0+1] when a multi-drop connection is set at the PLC1.
When " -1 " is specified for [F0], reconnection with all ports is established, and when " -1 " is specified for $[F 0+1]$, reconnection with all sub ports is established.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :---: | :---: | :---: |
| F0 | $0-255: \quad$ PLC port number | $-1:$All port numbers <br> designation |
| F0+1 | $0-255: \quad$ PLC sub-port number | $-1:$All sub-port numbers <br> designation |

## Supplemental remarks

- This command is only valid when a multi-drop connection (1:n) is set at PLC1. To re-establish a connection other than with PLC1, use a "RECONNECT_EX" command (page 4-241).
- The macro command is used in the event of a communication fault.
- Reconnection with the specified port is performed only once.
- When reconnection is successful, the "interrupted" information in system memory (\$s114 to 159) and 8-way communication memory (\$p[1] : 10 to 25) in the PLC1 are cleared.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## RECONNECT_EX

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## RECONNECT_EX PLC F0 F1

## Function: Reconnection

This macro command is used to establish a connection again with the port number [F1] or the sub-port number [F1+1] specified in [F0] of the PLC.
When " -1 " is specified for [F1], reconnection with all ports is established, and when " -1 " is specified for $[F 1+1]$, reconnection with all sub ports is established.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |
| F1 | O |  |  | $\bigcirc$ |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |  |
| :---: | :--- | :---: | :---: |
| F0 | $1-8: \quad$ PLC number |  |  |
| F1 | $0-255: \quad$ PLC port number | $-1:$All port numbers <br> designation |  |
| F1+1 | $0-255: \quad$ PLC sub-port number | $-1:$All sub-port number <br> designation |  |

## Supplemental remarks

- The macro command is used in the event of a communication fault.
- Reconnection with the specified port and the specified sub-port is performed only once.
- When reconnection is successful, the "interrupted" information in 8-way communication memory (\$p[F0] : 10 to 25) in the PLC is cleared. For the PLC1, the "interrupted" information in system memory (\$s114 to 129) is also cleared at the same time.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SAMPLE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI |  |

## SAMPLE F0 F1 F2

## Function: Sampling data acquisition

This macro command is used to store the sampling data specified in [F2] of the sampling buffer number specified in [F1] at the address specified in [F0].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | 〇 |  |  |  |
| F1 | O |  |  |  |
| F2 | O |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |  |
| :---: | :--- | :--- | :--- | :---: | :---: |
| F0 | Storage memory |  |  |  |  |
| F1 | 0: Cursor specification <br> 1: Buffer specification | ([F1] = 0) |  |  |  |
| F1+1 | 0: Base <br> 1-3: Overlap ID No. |  | $0-11$ : Buffer No. |  |  |
|  | 0-255: <br> ID No. of the item displayed | Not used |  |  |  |
| F2 | 0: Acquisition of sampling data <br> 1: Acquisition of average / maximum / minimum / total data <br> 2: Acquisition of alarm data |  |  |  |  |
| F2+1 | ([F2] = 0) |  | ([F2] = 1) |  | ([F2] = 2) |
|  | 0: With no time data <br> 1: With time data | $0-:$ Word No. | Not used |  |  |

1. Acquiring sampling data (with no time data)

- When [F1] = 0

When an item of the specified sampling is selected (the cursor is displayed), the data at the cursor position is stored.
When an item of the specified sampling is not displayed (the cursor is not displayed), the most recent sampling data is stored.

- When $[F 1]=1$

The most recent sampling data is stored.

- Specify the sampling data to be acquired in $[F 1+1]$ and $[F 1+2]$.
- Set " 0 " for [F2] and [F2+1].
- The following data is stored in the [F0] memory.

| Memory | Contents | Word Count |
| :---: | :---: | :---: |
| F0 | Sampling data (1) | 1 |
| F0+1 | Sampling data (2) | 1 |
| F0+2 | Sampling data (3) | 1 |
| $:$ | $:$ | $:$ |
| F0 + (sampling word count - 1) | Sampling data (sampling word count) | 1 |

* When the [Type] setting for the specified buffering area is other than [Trend], no operation takes place.

2. Acquiring sampling data (with time data)

- When [F1] = 0

When an item of the specified sampling is selected (the cursor is displayed), the data at the cursor position is stored.
When an item of the specified sampling is not displayed (the cursor is not displayed), the most recent sampling data is stored.

- When [F1] = 1

The most recent sampling data is stored.

- Specify the sampling data to be acquired in $[F 1+1]$ and $[F 1+2]$.
- Set "0" for [F2] and "1" for [F2+1].
- The data stored in the [F0] memory differs according to whether the [Put msec infomation on logging time] checkbox on the [Others] tab window in the [Buffering Area Setting] dialog is checked or unchecked.

- When [Put msec infomation on logging time] is unchecked:

| Memory | Contents | Word <br> Count |
| :---: | :---: | :---: |
| F0 | Sampling time (Greenwich data) | 2 |
| F0+2 | Sampling data (1) | 1 |
| F0+3 | Sampling data (2) | 1 |
| $:$ | $:$ | $:$ |
| F0 + (2 + sampling word count - 1) | Sampling data (sampling word count) | 1 |

- When [Put msec infomation on logging time] is checked:

| Memory | Contents | Word <br> Count |
| :---: | :---: | :---: |
| F0 | Sampling time (Greenwich data) | 2 |
| F0+2 | Sampling time in msec (0-999) | 1 |
| F0+3 | Sampling data (1) | 1 |
| F0+4 | Sampling data (2) | 1 |
| $:$ | $:$ | $:$ |
| F0 + (3 + sampling word count - 1) | Sampling data (sampling word count) | 1 |

* When the [Type] setting for the specified buffering area is other than [Trend], no operation takes place.

3. Acquiring average / maximum / minimum / total data

- Specify the sampling data to be acquired in $[F 1+1]$ and $[F 1+2]$.
- Set "1" for [F2].
- Set the number of words for [F2+1].
- The following data is stored in the [F0] memory.

| Memory | Contents | Word Count |
| :---: | :---: | :---: |
| F0 | Average | 2 |
| F0+2 | Maximum | 2 |
| F0+4 | Minimum | 2 |
| F0+6 | Total | 2 |
| F0+8 | Result of overflow <br> 0: No overflow <br> 1: Overflow occurred | 1 |

* If the [Type] setting for the specified buffering area is other than [Trend], or the [Use a Calculation Operation] checkbox on the [Other] tab window in the [Buffering Area Setting] dialog is unchecked, no operation takes place.

4. Acquiring alarm information

- Specify the sampling data to be acquired in [F1+1] and [F1+2].
- Set "2" for [F2].
- The following data is stored in the [F0] memory.

| Memory | Contents | Word Count |
| :---: | :---: | :---: |
| F0 | Automatic operation time | 2 |
| F0+2 | Automatic operation stop time | 2 |
| F0+4 | Program stop time | 2 |
| F0+6 | Number of stops | 1 |
| F0+7 | Rate of operation | 1 |

* When the [Type] setting is other than [Alarm] and the [Sampling Method] setting is other than [Alarm Tracking], no operation takes place.


## Supplemental remarks

- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SEARCH_FILE

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## SEARCH FILE F0 F1

## Function: JPEG file search

This macro command is used to search for JPEG file numbers in the SNAP/JPEG folder stored in the CF card based on the specified increments and store the result in memory at the address in [FO].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | ○ |  |  |  |
| F1 | ○ |  |  |  |

: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | Search result (file number) storage memory |
| F1 | 0: Searches the JPEG folder for JPxxxxx.jpg file <br> $1:$ <br> Searches the SNAP folder for VDxxxxx.jpg file |
| F1+1 | $0-32767: \quad$ Search start file number |
| F1+2 | $-32767-$ 32767: Increments |

## Example

> - \$u200 = 0 (W) [JPEG folder search]
> $\$ \mathrm{~L} 201=0(\mathrm{~W}) \quad$ [Search start file No. 0]
> \$u202 = 10 (W) [Increments 10]
> SEARCH_FILE \$u100 \$u200
> \$u201 = \$u100 (W)


## Supplemental remarks

- The macro command is valid even if no JPEG display item exists on the screen.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

ADJ_ANGLE

| All V8 models |  |
| :---: | :---: |
| V715X |  |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C | $\bigcirc$ |
| V708S |  |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## ADJ_ANGLE FO

## Function: Adjust viewing angle

This macro command is used to change the viewing angle adjustment value to the one specified in [F0].


* The default is " 0 ".


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | O |

$\bigcirc$ : Setting enabled (indirect designation disabled)
(): Setting enabled (indirect designation enabled)

## Setting range

| Memory | Value |  |
| :---: | :---: | :---: |
| F0 | $0-7: \quad$ Viewing angle adjustment value |  |

## Supplemental remarks

- The macro command is valid for V710C only.
- To save the ADJ_ANGLE setting to the V series, use SAVE _ANGLE. When the $V$ series is turned off without executing the SAVE_ANGLE command following the ADJ_ANGLE command, the viewing angle is reset to the one that was valid before the execution of the ADJ_ANGLE command.
- \$s958 stores the current viewing angle adjustment value 0-7.
- In addition to the macro command, the function switch is also available to adjust the viewing angle.

SAVE_ANGLE

| All V8 models |  |
| :---: | :---: |
| V715X |  |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C | $\bigcirc$ |
| V708S |  |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SAVE_ANGLE

## Function: Save viewing angle adjustment value

This macro command is used to store the viewing angle adjustment value set by the ADJ_ANGLE command in the FROM.

## Example

Adjusting the viewing angle suitable for operation in position 3


1. Execute a macro ADJ_ANGLE 3.
2. Execute a macro SAVE_ANGLE.

## Supplemental remarks

- The macro command is valid for V 710 C only.
- When the SAVE_ANGLE command is executed, the communication (serial, Ethernet) is temporarily interrupted. Do not execute the SAVE_ANGLE command frequently.


## ADJ_VOLUME

| V815X | $\bigcirc$ |
| :---: | :---: |
| V812S | $\bigcirc$ |
| V810S | $\bigcirc$ |
| V810T | $\bigcirc$ |
| V810C |  |
| V808S | $\bigcirc$ |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | $\bigcirc$ |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C |  |
| V708S |  |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## ADJ_VOLUME F0 F1 F2

## Function: Volume adjustment

This macro command is used to change the volume of the channel specified in $[F 0]$ to the value specified in $[F 1] /[F 2]$.

|  | Volume adjustment value | Volume |
| :---: | :---: | :---: |
| High | 7 | OdB |
|  | 6 | -3dB |
|  | 5 | -6dB |
|  | 4 | -9dB |
|  | 3 | -12dB |
|  | 2 | -15dB |
|  | 1 | -18dB |
| Low | 0 | -21dB |

* The default is " 4 " ( -9 dB ).


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 | O |  |  | $\bigcirc$ |
| F1 | O |  |  | $\bigcirc$ |
| F2 | O |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

| Memory | Value |
| :---: | :--- |
| F0 | 0: L channel <br> $1:$ <br> 2: $\quad$ B channel <br> F1 |
| Foth channels $L$ and $R$ |  |

## Supplemental remarks

- This command is valid only for the V8 series and V715X.
- To save the ADJ_VOLUME setting to the $V$ series, use SAVE _VOLUME. When the $V$ series is turned off without executing the SAVE_VOLUME command following the ADJ_VOLUME command, the viewing angle is reset to the one that was valid before the execution of the ADJ_VOLUME command.
- The current volume adjustment value (0-7) for the $L$ channel is stored in $\$$ s1001. The current volume adjustment value (0-7) for the $R$ channel is stored in \$s1002.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SAVE_VOLUME

| V815X | O |
| :---: | :---: |
| V812S | O |
| V810S | O |
| V810T | O |
| V810C |  |
| V808S | O |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | O |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C |  |
| V708S |  |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |
|  |  |

## SAVE_VOLUME

## Function: Save volume adjustment value

This macro command is used to save the volume adjustment value set by the "ADJ_VOLUME" command in FROM.

## Example

- ADJ_VOLUME 266 SAVE_VOLUME
The above program sets the volume for both $L$ and $R$ channels to 6 .


## Supplemental remarks

- This command is valid only for the V8 series and V715X.
- When the SAVE_VOLUME command is executed, the communication (serial, Ethernet) is temporarily interrupted. Do not execute the SAVE_VOLUME command frequently.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## TREND REFRESH TREND REFRESH F0 F1

## All models

## Function: Trend sampling

The macro command is used to refresh the display of trend sampling specified in [F0] and [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F0 |  |  |  | $\bigcirc$ |
| F1 |  |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :--- | :--- |
|  | 0: Base |
| F0 | 1: Overlap ID 0 |
|  | 2: Overlap ID 1 |
|  | 3: Overlap ID 2 |
| F1 | $0-$ 255: ID |

## Supplemental remarks

- The macro command is valid for trend sampling only.
- If memory addresses are specified in trend sampling settings for [Graph Min. Value] and [Graph Max. Value], and [Scale: Max.] and [Scale: Min.], refreshing the trend sampling display is required each time data at any of these addresses varies.
- For the V8 series, the result of macro execution is stored in \$s1063. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

## All models

SYS (SET_SCRN) F1

## Function: Screen number designation

This macro command is used to display the screen specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | © |  |  |  |

○: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :--- | :--- |
| F0 | SET_SCRN |
| F1 | $0-1023:$ Screen number |

## Example

- \$u100 = 55 (W) [Screen number] SYS (SET_SCRN) \$u100

The above program displays screen No. 55.

## Supplemental remarks

- If a screen number that does not exist is specified in [F1], the macro command is disabled.
- The macro command is invalid in screen OPEN, screen CLOSE, overlap library OPEN, overlap library CLOSE, and initial macros.
- The macro command is valid only once in a macro created on the macro edit sheet. Its execution timing is set at the end of the macro on the edit sheet.
- Do not execute the macro command in every cycle using a CYCLE macro or an event timer macro.
- For the V8 series, the result of macro execution is stored in \$s72. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SYS

## All models

$\square$

## SYS (SET_MOVLP) F1

## Function: Multi-overlap/global overlap setting

This macro command is used to display the overlap library specified in F1+1 on the overlap ID in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
|  | Dot (unit: $4 \times 1$ ) |  |
| F0 | SET_MOVLP | Line/column (unit $8 \times 20$ ) |
| F1 | $0-3: \quad$ Overlap ID |  |
| F1+1 | $0-1023:$ Overlap library number |  |
| F1+2 | $0-1023: ~ X$ coordinate | $0-127: \quad$ X coordinate |
| F1+3 | $0-767:$ Y coordinate | $0-38: \quad$ Y coordinate |

## Example

- \$u100 = 2 (W) [Overlap ID]
\$u101 = $12(\mathrm{~W}) \quad$ [Overlap library number]
$\$$ u102 $=50(\mathrm{~W}) \quad[\mathrm{X}$ coordinate $]$
\$u103 = 5 (W) [Y coordinate]
SYS (SET_MOVLP) \$u100
Line/Column:
The above program displays overlap ID2 and overlap library No. 12 at the coordinates X: 400 and $\mathrm{Y}: 100$.

Dot:
The above program displays overlap ID2 and overlap library No. 12 at the coordinates $X$ : 48* and $Y$ : 5 .

* Since four dots are treated as one unit on the $X$ axis, any value in the range of " 48 " to " 51 " on the axis is regarded as " 48 ".


## Supplemental remarks

- The macro command is valid when [Internal] is checked under [Designate] in the [Multi-Overlap] or [Global Overlap Setting] dialog.
- If [F1] $>3$, the macro command is disabled.
- If an overlap library number specified in $[F 1+1]$ does not exist, the macro command is disabled.
- If the specified $X$ and $Y$ coordinates are outside the permissible ranges, the display appears in the lower right corner of the screen.
- The macro command is invalid in a screen CLOSE macro and an initial macro.
- The macro command is valid only once in a macro created on the macro edit sheet for each overlap ID. Its execution timing is set at the end of the macro on the edit sheet.
- Use the OVLP_SHOW command to turn off the multi-overlap or global overlap.
- Do not execute the macro command in every cycle using a CYCLE macro or an event timer macro.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SYS

SYS (OVLP_SHOW) F1

## All models

## Function: Overlap ON/OFF

This macro command is used to show/hide the overlap ID specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | © |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | OVLP_SHOW |  |
| F1 | $0-3:$ | Overlap ID |
| F1+1 | $0: \quad$ OFF (non-display) |  |
|  | $1:$ | ON (display) |

## Example

- \$u100 = 2 (W) [Overlap ID]
\$u101 = 0 (W) [OFF]
SYS (OVLP_SHOW) \$u100
The above program turns off overlap ID2.
- \$u100 = $2(\mathrm{~W}) \quad$ [Overlap ID]
\$u101 = 1 (W) [ON]
SYS (OVLP_SHOW) \$u100
The above program turns on overlap ID2.


## Supplemental remarks

- If $[\mathrm{F} 1]>3$, the macro command is disabled.
- If $\mathrm{F} 1+1=0$, the macro command is valid for normal, call-, multi-, and global ([Designate]: [Internal]) overlaps.
- The macro command is invalid in screen CLOSE, overlap library CLOSE and initial macros.
- The macro command is valid only once in a macro created on the macro edit sheet for each overlap ID. Its execution timing is set at the end of the macro on the edit sheet.
- Do not execute the macro command in every cycle using a CYCLE macro or an event timer macro.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS



SYS (OVLP_POS) F1

## Function: Overlap relocation

This macro command is used to move the overlap ID specified in [F1] to the coordinates $X$ in $[F 1+1]$ and $Y$ in $[F 1+2]$.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |
| :---: | :--- | :--- | :---: | :---: |
|  | Dot (unit: $4 \times 1$ ) |  |  | Line/column (unit 8 $\times$ 20) |
| F0 | OVLP_POS | 0: Overlap ID 0 <br> 1: Overlap ID 1 <br> 2: Overlap ID 2 <br> 3: Overlap ID 3 |  |  |
| F1+1 | $0-1023: ~ X ~ c o o r d i n a t e ~$ | $0-127: \quad$ X coordinate |  |  |
| F1+2 | $0-767:$ Y coordinate | $0-38: \quad$ Y coordinate |  |  |

## Example

- $\$ u 100=2(\mathrm{~W}) \quad$ [Overlap ID]
\$u101 = $50(\mathrm{~W}) \quad$ [X coordinate]
\$u102 = 5 (W) [Y coordinate]
SYS (OVLP_POS) \$u100
Line/Column:
The above program moves overlap ID2 to coordinates $\mathrm{X}: 400$ and $\mathrm{Y}: 100$.
Dot:
The above program moves overlap ID2 to coordinates $X$ : 48* and $Y$ : 5 .
* Since four dots are treated as one unit on the $X$ axis, any value in the range of " 48 " to " 51 " on the axis is regarded as " 48 ".


## Supplemental remarks

- If [F1]>3, the macro command is disabled.
- In the event of a normal or a call-overlap, the macro command is enabled also to display the overlap.
- The $X$ and $Y$ coordinates specified by the macro command take effect until the screen is switched. If OVLP_SHOW is executed after OVLP_POS, the overlap appears at the coordinates specified by OVLP_POS.
- The macro command is invalid in screen OPEN, screen CLOSE, overlap library CLOSE and initial macros.
- The macro command is valid only once in a macro created on the macro edit sheet for each overlap ID. Its execution timing is set at the end of the macro on the edit sheet.
- Do not execute the macro command in every cycle using a CYCLE macro or an event timer macro.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

## All models

 0
## SYS (GET_MSG) F1

## Function: Message acquisition

This macro command is used to store the F1-specified message in memory at the \$u address in F1+1 using ASCII/shifted JIS codes.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
|  | V8/V7 | V6 |
| F0 | GET_MSG |  |
| F1 | $0-32767:$ Message number | $0-6143:$ Message number |
| F1+1 | $0-16383:$ Storage memory No. |  |
| \$u[F1+1] <br> $\vdots$ | Shifted JIS/ASCII <br> 50 words maximum |  |

$: \leftarrow \vee$ series (Return data)

## Example

- \$u50 = 256 (W) [Message number]
\$u51 = 100 (W) [Storage memory No.]
SYS (GET_MSG) \$u50


The above program stores message No. 256 (= GNo. 1 and line No. 0) in memory at \$u100 and after using shifted JIS codes.
The above program shows the case when [MSB $\rightarrow$ LSB] is selected for [Text Process] on the [Communication Setting] tab window in the [Device Connection Setting] dialog for the PLC1.

## Supplemental remarks

- Swap between the higher-order byte and the lower-order byte can be set by selecting an option for [Text Process] on the [Communication Setting] tab window in the [Device Connection Setting] dialog.
- Regardless of the setting above, use a "GET_MSGBLK" command (page 4237) for storing data by [LSB $\rightarrow$ MSB].
- A null code is added to the end. Even-number-byte text thereby uses one extra word.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SYS

## All models

 0
## SYS (GET_XY) F1

## Function: Acquisition of $X$ and $Y$ coordinates on circumference

This macro command is used to calculate $X$ and $Y$ coordinates from a radius, an angle and, center coordinates.


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :--- |
| F0 | GET_XY |
| F1 | 0 or above: Radius |
| F1+1 | 0 to 3600: Angle (0.1-degrees) |
| F1+2 | 0 or above: Center coordinate $X$ |
| F1+3 | 0 or above: Center coordinate Y |
| F1+4 | 0 or above: $X$ coordinate |
| F1+5 | 0 or above: $Y$ coordinate |

$$
: \leftarrow \vee \text { series (Return data) }
$$

## Example

- \$u100 = 100 (W) [Radius]
\$u101 = 900 (W) [Angle]
\$u102 = $200(\mathrm{~W})$ [X coordinate of the center] \$u103 = $200(\mathrm{~W})$ [Y coordinate of the center]
SYS (GET_XY) \$u100
On the circumference of a circle 100 dots in radius with the
 center at coordinates $X$ : 200 and $Y$ : 200, the above program calculates the $X$ and $Y$ coordinates of the point at an angle of 90 degrees.
X coordinate: $\$$ u104 = 200
Y coordinate: $\$ \mathrm{Lu} 105=100$


## Supplemental remarks

- If a value specified for the angle is 3,600 or above, the value is corrected to the remainder as the result of division by 3,600 .
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI | $\triangle$ |
| TELLUS2 HMI | $\triangle$ |

SYS (SET_BZ) F1

## Function: Buzzer control

This macro command is used to control the buzzer of MONITOUCH.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | ๑ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :--- | :--- |
| F0 | SET_BZ |  |
| F1 | 0: Normal <br> 1: Error <br> F1+1 <br>  <br> 2: Sound change | 0: Standard <br> $1: ~ S h o r t ~$ <br> $2: ~ N o n e ~$ <br>  <br>  <br> 2: Continuous* |

* Incompatible with TELLUS versions 2 and 3


## Example

- \$u100 = $2(\mathrm{~W}) \quad$ [Sound change] \$u101 = 2 (W) [None]
SYS (SET_BZ) \$u100
The above program turns off the MONITOUCH buzzer.


## Supplemental remarks

- The [Buzzer] tab window setting in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [Buzzer]) takes effect only at the time of initial connection of MONITOUCH.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

 0

## SYS (GET_TIME) F1

## Function: System time acquisition

This macro command is used to acquire values from the timer that increments by one at $10-\mathrm{ms}$ intervals after power-on.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | GET_TIME |
| F1 | $0-4294967295(\times 10 \mathrm{msec})$ |
| F1+1 |  |

$: \leftarrow \mathrm{V}$ series (Return data)

## Example

- SYS(GET_TIME) \$u100

The above program acquires the time that has elapsed after power-on.
\$u100 = 27900 (W)
$279000 \mathrm{msec}=279 \mathrm{sec}=4$ minutes 39 seconds

## Supplemental remarks

- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

SYS (STA_TIME) F1
SYS (CHK_TIME) F1

## Function: Timer setting

STA_TIME starts the timer. CHK_TIME confirms a time-out.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | ๑ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

- STA_TIME

|  | Value | Remarks |
| :---: | :--- | :--- |
| F0 | STA_TIME |  |
| F1 | Time-out flag <br> $0:$ Counting <br> $1: ~ T i m e-o u t ~$ |  |
|  | 0: Timer type 0 | F1 $=1:$ Stops the timer |
|  | $1:$ Timer type 1 | F1 $=1:$ <br> Updates the timer start time |
| F1+2 | $0-65535:$ Time-out time | $\times 10 \mathrm{~ms}$ |
| F1+3 | Timer start time |  |

$$
: \leftarrow \vee \text { series (Return data) }
$$

- CHK_TIME

For [F1], use the same memory as for STA_TIME.

## Example

<Timer type 0>

- OPEN macro
\$u101 = 0 (W) [Timer type]
\$u102 = $50(\mathrm{~W}) \quad$ [Time-up time]
SYS (STA_TIME) \$u100
The above program starts the timer type 0 , for which a 500 -ms time-out period is set.
\$u103 =current time and \$u100=0 are set.
- CYCLE macro

SYS (CHK_TIME) \$u100
$\$ \mathrm{u} 100=0$
$\downarrow$ Lapse of 500 ms
\$u100 = 1 (W)
(End)

<Timer type 1>

- OPEN macro
\$u101 = 1 (W) Timer type
\$U102 = 50 (W) Time-up time
SYS (STA_TIME) \$u100
The above program starts the timer type 1, for which a 500-ms time-out period is set.
$\$ \mathrm{~L} 103$ =current time and $\$ \mathrm{~L} 100=0$ are set.
- CYCLE macro

SYS (CHK_TIME) \$u100
IF (\$u100! = 0) LB 0
RET
LBO
\$u200 = \$u200+1 (W)
RET

$\$ \mathrm{u} 100=0$
$\downarrow$ Lapse of 500 ms
$\$ \mathrm{Lu} 100=1$ and $\$ \mathrm{u} 200=1$ are set.
$\downarrow$
\$u103 =current time and \$u100=0 are set.
$\downarrow$ Lapse of 500 ms
$\$ \mathrm{u} 100=1$ and $\$ \mathrm{u} 200=2$ are set.
$\downarrow$
(Repetition)

## Supplemental remarks

- The timer base is set to 10 ms .
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SYS

SYS (GET_CLND) F1

## Function: Calendar acquisition

This macro command is used to acquire the values of the system calendar.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | ๑ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | GET_CLND |  |
| F1 | 0 or above: | Year (4-digit) |
| F1+1 | $1-12:$ | Month |
| F1+2 | $1-31:$ | Day |
| F1+3 | $0-23:$ | Hour |
| F1+4 | $0-59:$ | Minute |
| F1+5 | $0-59:$ | Second |
|  | $0:$ | Sunday |
|  | $1:$ | Monday |
|  | $2:$ | Tuesday |
| F1+6 | $3:$ | Wednesday |
|  | $4:$ | Thursday |
|  | $5:$ | Friday |
|  | $6:$ | Saturday |
|  |  |  |

$: \leftarrow \mathrm{V}$ series (Return data)

## Example

- SYS (GET_CLND) \$u100



## Supplemental remarks

- The calendar is acquired not from a PLC or other external device but from the V series unit.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SYS (SET_CLND) F1

## Function: Calendar setting

This macro command is used to set the values of eight words starting from the address specified in [F1] to the system calendar. When MONTOUCH is connected with PLC1 including the calendar function, this macro command also sets the PLC1's calendar.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | © |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | SET_CLND |  |
| F1 | 0 or above: Year (4-digit/2-digit) |  |
| F1+1 | $1-12:$ Month |  |
| F1+2 | $1-31:$ Day |  |
| F1+3 | $0-23:$ Hour |  |
| F1+4 | $0-59:$ Minute | Invalid; to be automatically <br> calculated by MONITOUCH |
| F1+5 | $0-59:$ Second | For 1:n connection only |
| F1+6 | Day of the week |  |
| F1+7 | $0-31:$ PLC port number |  |

## Example

- $\$ \mathrm{u} 100=2005(\mathrm{~W})$
\$u101 = 7 (W)
$\$ \mathrm{~L} 102=15(\mathrm{~W})$
$\$ \mathrm{~L} 103=15(\mathrm{~W})$
$\$ \mathrm{~L} 104=0(\mathrm{~W})$
\$u105 = 0 (W)
SYS (SET_CLND) \$u100
The above program sets the calendars in the V series and the PLC1 to July 15, 2005 on Friday at 15:00:00.


## Supplemental remarks

- When setting calendar data for PLC 2 to 8, use a macro command "PLC_CLND" (page 4-148).
- When setting calendar data only for the $V$ series, use a macro command " SYS (SET_SYS_CLND) F1" (page 4-296).
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SYS

All models

## SYS (SET_BUFNO) F1

## Function 1: Trend sampling/data sampling

This macro command is used to store the average, maximum, minimum, and total of sampling buffer word Nos. 0-31 located in the F1-specified buffer in system memory at \$s180-435.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :---: |
| F0 | SET_BUFNO |
| F1 | 0-11: Buffer number |
| \$s180-181 | Buffer word No. 0 Average |
| \$s182-183 | Buffer word No. 0 Maximum |
| \$s184-185 | Buffer word No. 0 Minimum |
| \$s186-187 | Buffer word No. 0 Total |
| \$s188-195 | Buffer word No. 1 Average/maximum/minimum/total |
| \$s196-203 | Buffer word No. 2 Average/maximum/minimum/total |
| \$s204-211 | Buffer word No. 3 Average/maximum/minimum/total |
| \$s212-219 | Buffer word No. 4 Average/maximum/minimum/total |
| \$s220-227 | Buffer word No. 5 Average/maximum/minimum/total |
| \$s228-235 | Buffer word No. 6 Average/maximum/minimum/total |
| \$s236-243 | Buffer word No. 7 Average/maximum/minimum/total |
| \$s244-251 | Buffer word No. 8 Average/maximum/minimum/total |
| \$s252-259 | Buffer word No. 9 Average/maximum/minimum/total |
| \$s260-267 | Buffer word No. 10 Average/maximum/minimum/total |
| \$s268-275 | Buffer word No. 11 Average/maximum/minimum/total |
| \$s276-283 | Buffer word No. 12 Average/maximum/minimum/total |
| \$s284-291 | Buffer word No. 13 Average/maximum/minimum/total |
| \$s292-299 | Buffer word No. 14 Average/maximum/minimum/total |
| \$s300-307 | Buffer word No. 15 Average/maximum/minimum/total |
| \$s308-315 | Buffer word No. 16 Average/maximum/minimum/total |
| \$s316-323 | Buffer word No. 17 Average/maximum/minimum/total |
| \$s324-331 | Buffer word No. 18 Average/maximum/minimum/total |
| \$s332-339 | Buffer word No. 19 Average/maximum/minimum/total |
| \$s340-347 | Buffer word No. 20 Average/maximum/minimum/total |
| \$s348-355 | Buffer word No. 21 Average/maximum/minimum/total |
| \$s356-363 | Buffer word No. 22 Average/maximum/minimum/total |
| \$s364-371 | Buffer word No. 23 Average/maximum/minimum/total |
| \$s372-379 | Buffer word No. 24 Average/maximum/minimum/total |
| \$s380-387 | Buffer word No. 25 Average/maximum/minimum/total |
| \$s388-395 | Buffer word No. 26 Average/maximum/minimum/total |


|  | Value |
| :---: | :--- |
| $\$ s 396-403$ | Buffer word No. 27 Average/maximum/minimum/total |
| $\$ s 404-411$ | Buffer word No. 28 Average/maximum/minimum/total |
| $\$ s 412-419$ | Buffer word No. 29 Average/maximum/minimum/total |
| \$s420-427 | Buffer word No. 30 Average/maximum/minimum/total |
| \$s428-435 | Buffer word No. 31 Average/maximum/minimum/total |

$: \leftarrow \mathrm{V}$ series (Return data)

## Example

- \$u100 = 5 (W) [Buffer number] SYS (SET_BUFNO) \$u100

The above program stores the average, maximum, minimum and total of buffer words located in buffer No. 5 in memory at $\$$ s180 to 435.

## Supplemental remarks

- The macro command is valid when [Use a Calculation Operation] is checked on the [Others] tab window in the [Buffering Area Setting] dialog. If the option is checked for two or more buffers, the buffer given the smallest number is selected as default.
- The macro command does not work if no display area exists on the screen.
- Sampling buffer word Nos. 32 to 127 are not available with the macro command.
- The result of macro execution is stored in \$s72. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## Function 2: Alarm function

This macro command is used to store the information on the alarm function in the F1-specified buffer in memory at \$s436-443.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :---: | :--- |
| F0 | SET_BUFNO |
| F1 | $0-11:$ Balue |
| $\$ s 436-437$ | Automatic operation time |
| $\$ s 438-439$ | Automatic operation stop time |
| $\$ s 440-441$ | Program stop time |
| $\$ s 442$ | Number of stops |
| $\$ s 443$ | Rate of operation XX.X |

$: \leftarrow \vee$ series (Return data)

## Example

- \$u100 = 4 (W) [Buffer number] SYS (SET_BUFNO) \$u100

The above program stores the information on the alarm function in buffer No. 4 in memory at \$s436-443.

## Supplemental remarks

- The macro command is valid when [Alarm Tracking] is selected for [Sampling Method] in the [Buffering Area Setting] dialog.
- For more information on each data item, refer to the V8 Series Reference Manual.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## SYS (GET_SMPL) F1

## Function: Sampling data acquisition

This macro command is used to store the data on the specified sampling number located in the specified buffer in memory at the \$u address in F1+2.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
Setting range


|  |  | Value |
| :---: | :---: | :---: |
|  | \$u $n$ | Time data 0 |
|  | \$u n+1 | Time data 1 |
|  | \$u n+2 | Sampling relay number |
|  | \$u n | Time data 0 |
|  | \$u n+1 | Time data 1 |
|  | \$u n+2 | Sampling bit information |

$: \leftarrow \mathrm{V}$ series (Return data)

## Example

| - \$u100 $=3(\mathrm{~W})$ | [Buffer number] |
| :--- | :--- |
| \$u101 $=0(\mathrm{~W})$ | [Sample number] |
| \$u102 $=200(\mathrm{~W})$ | [Storage memory] |
| SYS (GET_SMPL) \$u100 |  |

The above program stores the sampling information on sampling No. 0 located in buffer No. 3 in memory at $\$ \mathrm{l} 200$.
In the case of time order alarming:

$$
\begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \text { \$u200 }=1 \text { 1E8F HEX } \\
\text { \$U201 }=06 \mathrm{~B} 4 \text { HEX } \\
\text { \$U202 }=0002 \text { HEX }
\end{array} \quad \begin{array}{llll}
\hline 0 & 0 & 0 & 1 \\
\hline
\end{array}
$$

20 July, 15:28:36 relay No. 2 ON

## Supplemental remarks

- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS



SYS (GET_SCUR) F1

## Function: Cursor point acquisition

This macro command is used to store the sampling number and the cursor address associated with the sampling data being displayed.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | © |  |  |  |

: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :---: | :---: |
| F0 | GET_SCUR |  |
| F1 | 0: Base <br> 1: Overlap ID 0 <br> 2: Overlap ID 1 <br> 3: Overlap ID 2 |  |
| F1+1 | 0-255: ID |  |
| F1+2 | 0: Cursor non-display | The most recent information to be stored in F1+3 and F1+4 |
|  | 1: Cursor display | The cursor information to be stored in F1+3 and F1+4 |
| F1+3 | 0 or above: Sample number | Used by GET_SMPL |
| F1+4 | 0 or above: Cursor address | Sampling number comparison* |

$$
: \leftarrow \vee \text { series (Return data) }
$$

* Whether or not the acquired sampling number is the same as that previously acquired is checked.
Even if the sampling number remains the same, any change in the cursor address means that the data to be fetched has also changed.
Contrary, even if the sampling number has changed, no change in the cursor address means that the data to be accessed also remains the same.


## Example

- \$u100 = 0 (W) [Base]
\$u101 = 1 (W) [ID]
SYS (GET_SCUR) \$u100
The above program acquires the cursor point of the sampling data (ID 1) on the base screen.

$$
\begin{array}{ll}
\$ u 102=1 & \text { [Cursor being displayed] } \\
\$ \text { u103 }=28 & \text { [Sample number] } \\
\text { \$u104 }=39(\mathrm{~W}) & \text { [Cursor address] }
\end{array}
$$

## Supplemental remarks

- The macro command is valid when [Bit Synchronization], [Constant Sampling], or [Device Memory Map] is selected for [Sampling Method].
- If the sampling number is " 5 " at the time of the execution of GET_SCUR, the sampling count (numerical data display) on the screen shows " 6 ".
This results from the fact that the cursor point starts from " 0 " and the sampling count (numerical data display) starts from " 1 ".
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS



## SYS (GET_BUF) F1

## Function: Alarm mask information acquisition

This macro command is used to access message numbers that are set to no storage in memory from the message group specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | V8/V7 |  |  |  | V6 |  |  |  |  |  |
| F0 | GET_BUF |  |  |  |  |  |  |  |  |  |
| F1 | 0-127: Message GNo. |  |  |  | 0-23: Message GNo. |  |  |  |  |  |
| F1+1 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 <br> L Line No. 15 Line No. 0 |  |  |  |  |  |  |  |  |  |
| F1+2 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 <br> L Line No. 31 Line No. 16 |  |  |  |  |  |  |  |  |  |
| F1+3 |  |  |  |  |  |  |  |  |  |  |
| F1+4 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 <br> L Line No. 63 Line No. 48 |  |  |  |  |  |  |  |  |  |
| F1+5 |  |  |  |  |  |  |  |  |  |  |
| F1+6 | Line No. 95 <br> Line No. 80 |  |  |  |  |  |  |  |  |  |
| F1+7 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 <br> L Line No. 111 <br> Line No. 96 |  |  |  |  |  |  |  |  |  |
| F1+8 |  |  |  |  |  |  |  |  |  |  |
| F1+9 | $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline \end{array}$ <br> L Line No. 143 |  |  |  |  |  |  |  |  |  |


$: \leftarrow \vee$ series (Return data)

## Example

- \$u100 = 3 (W) [Message GNo.] SYS (GET_BUF) \$u100

The above program accesses messages that are set to no storage in memory from the message group No. 3.
$\$ \mathrm{l} 101=$ F005 HEX $\quad$ [Message No. 0, 2, 15]
\$u102 = 0001 HEX [Message No. 16]

## Supplemental remarks

- Whether or not to store messages in memory is selected in the [Message Edit] window.
From the [Display] menu, select [Alarm]. Click the desired icons in the window.

- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

## SYS (DSP_DATA) F1

## Function: Show/hide numerical data display

This macro command is used to show/hide numerical data displays placed in the specified location (ID).

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | $\bigcirc$ |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :--- | :--- | :--- |
| F0 | DSP_DATA |  |
|  | $0:$ | Base |
|  | $1:$ | Overlap ID 0 |
|  | $2:$ | Overlap ID 1 |
| F1 | $3:$ | Overlap ID 2 |
|  | $4:$ | Data block No. 0 |
|  | $5:$ | Data block No. 1 |
|  | $6:$ | Data block No. 2 |
|  | $7:$ | Data block No. 3 |
| F1+1 | $0-255: \quad$ ID |  |
| F1+2 | $0:$ | Not display |
|  | $1:$ | Display |

## Example

- \$u100 = 0 (W) [Base]
\$u101 = 1 (W) [ID]
\$u102 = 0 (W) [Not display]
SYS (DSP_DATA) \$u100
The above program hides all numerical data displays of ID 1 on the base screen.


## Supplemental remarks

- The macro command is valid for numerical data displays only. It cannot be used for character and message displays.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS



## SYS (CHG_DATA) F1

## Function: Change numerical data display property

This macro command is used to change the properties of the numerical data displays placed in the specified location (ID).

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range



## Example

The above program changes the properties of the numerical data display of ID1 placed on the base screen.

- Type: HEX
- Background color: Black
- Foreground color: Green
- Decimal Point: None
- Number of digits: 5

| $\$ u 200=0(\mathrm{~W})$ | $[$ [Base] |
| :--- | :--- |
| $\$ u 201=1(\mathrm{~W})$ | $[$ ID] |
| $\$ \mathrm{Lu} 202=0(\mathrm{~W})$ | $[$ Not display $]$ |

SYS (DSP_DATA) \$u200

| \$u100 $=0(\mathrm{~W})$ | [Base] |
| :---: | :---: |
| \$u101 = 1 (W) | [ID] |
| \$u102 = 3 (W) | [Type] |
| \$u103 = 0004H (W) | [Color] |
| \$u104 = 0005H (W) | [Decimal point and number of digits] |
| SYS (CHG DATA) | 00 macro execution |

```
$u200 = 0 (W) [Base]
$u201 = 1 (W) [ID]
$u202 = 1 (W) [Display]
SYS (DSP_DATA) $u200
```


## Supplemental remarks

- The macro command is valid for numerical data displays only. It cannot be used for character and message displays.
- When using this macro command, be sure to execute the command DSP_DATA to redisplay the data. For more information on DSP_DATA, refer to page 4-276.
- Even on MONITOUCH with 32k- or 64k-color display, 128 colors + blink ([Custom Color] $\rightarrow$ [Palette 1]) are available with the macro command.
- 128-color codes

The boxes on the palette are provided with their individual codes.
$\begin{array}{llllllll}0 & 1 & 3 & 4 & 5 & 7 & 8 \\ \text { A B C D E F }\end{array}$


- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | O |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E | $\bigcirc$ |
| V608CH |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## SYS (STA_LIST) F1

## Function: Data sheet print

This macro command is used to print data sheets.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | © |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  | Value |
| :---: | :--- | :--- |
| F0 | STA_LIST |  |
| F1 | $0-1023:$ | Print start number |
| F1+1 | $1-1023:$ | Number of pages to be printed |

## Example

- \$u100 = 3 (W) [Print start number] \$u101 = 1 (W) [Number of pages to be printed] SYS (STA_LIST) \$u100 macro execution

The above program prints data sheet No. 3.


## Supplemental remarks

- If nothing is registered on a data sheet, specifying the page of this sheet does not produce a printout of it.
[Data Sheet Edit]

$\$ \mathrm{u} 100=10$
\$u101 = 5
[Print start number] [Number of pages to be printed]


Data sheet No. 10 to 12 and 14 can be printed. The page that is not stored, No. 13, is ignored, and four pages are output.

SYS (STA_LIST) \$u100

- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| V815X | O |
| :---: | :---: |
| V812S | O |
| V810S | O |
| V810T | O |
| V810C |  |
| V808S | O |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | $O$ |
| V712S | $O$ |
| V710S | $O$ |
| V710T | $O$ |
| V710C |  |
| V708S | $O$ |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T | $O$ |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |
|  |  |
|  |  |

## SYS (RGB_CHG) F1

## Function: Change RGB input parameter

This macro command is used to change the RGB parameter set on the RGB input screen (on the [Main Menu] screen) between [Setting 1] and [Setting 2].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :---: |
| F0 | RGB_CHG |  |
| F1 | 0: <br> 1: Setting 1 |  |

## Example

- \$u100 = 1 (W) [Setting 2]

SYS (RGB_CHG) \$u100
The above program changes the RGB parameter from [Setting 1] to [Setting 2].

## Supplemental remarks

- If the frequency is different between [Setting 1] and [Setting 2]: MONITOUCH selects [Setting 1] or [Setting 2] automatically.
- If the frequency is the same between [Setting 1] and [Setting 2]: At power-on, [Setting 1] always takes effect. Afterward, [Setting 1] or [Setting 2] can be selected by the macro command.
- This macro command is valid when "GU-01" or "GU-10" unit is used.
- The result of macro execution is stored in \$s72. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SYS

| V815X | O |
| :---: | :---: |
| V812S | O |
| V810S | O |
| V810T | O |
| V810C |  |
| V808S | O |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | $O$ |
| V712S | $O$ |
| V710S | $O$ |
| V710T | $O$ |
| V710C |  |
| V708S | $O$ |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T | $O$ |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |
|  |  |
|  |  |

## SYS (SET_RGB) F1

## Function 1: Switch from/to RGB input screen

This macro command is used to switch between the RGB input screen and the RUN screen.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | SET_RGB |
| F1 | 0: OFF (RUN screen) <br> 1: ON (RGB input screen) |

## Example

- \$u100 = $0(\mathrm{~W}) \quad$ [RUN screen display]

SYS (SET_RGB) \$u100
The above program switches from the RGB input screen to the RUN screen.

## Supplemental remarks

- In addition to the macro command, bit 12 in the read area " $n+1$ " is also available to switch to/from the RGB input screen.
- While the bit in the read area is set (ON), the macro command is invalid.
- The result of macro execution is stored in $\$$ s 72 .

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## Function 2: Snap/delete RGB input screen

This macro command is used to snap and delete the RGB screen.

| V815X | O |
| :---: | :---: |
| V812S | O |
| V810S | O |
| V810T | O |
| V810C |  |
| V808S | O |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X | O |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C |  |
| V708S |  |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |
|  |  |

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :---: | :---: |
| F0 | SET_RGB |  |
| F1 | 2: $\quad$ Snap (turn the RGB screen ON and snap it) <br> 3: File delete (delete the JPEG file generated by snapping) |  |
| F1+1 | (F1 = 2) | (F1 = 3) |
|  | $\begin{gathered} \text { File No.: } \\ (0-32767 /-1 \text { [AUTO] }) \end{gathered}$ | $\begin{gathered} \text { File No.: } \\ (0-32767) \end{gathered}$ |

## JPEG file

Storage target: $\quad \backslash($ access folder) 1 SNAP
File name:
IVDxxxx.jpg T000-9999: File No.

## Example

```
- $u100 = 2 (W) [Snap]
$u101 = 0 (W) [Specify file No. 0.]
SYS (SET_RGB) $u100
```

The above program saves the currently displayed RGB input screen as VD0000.jpg.

## Supplemental remarks

- This function can be used only with the V8 series and the V715X.
- When the file number is set to [AUTO] for the snap operation, if no file exists the file number is generated by incrementing from [0000], while if files exist it is generated by incrementing from the number following the current maximum number.
However, the numbers must be within the range determined by [Maximum Number of Snap Files in Auto] under [System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [Video/RGB].
- When the number set for [Maximum Number of Snap Files in Auto] has been reached, operation proceeds in accordance with the specification ([Stop] or [Overwrite]) for [When the
 Snap File Limitation is Exceeded] under [System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [Video/RGB]. When [Overwrite] is selected, the number is reset to "0000" and the operation proceeds.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

Function 3: RGB input channel selection
This macro command is used to select the display in the read area, or to select the

| V815X | O |
| :---: | :---: |
| V812S | O |
| V810S | O |
| V810T | O |
| V810C |  |
| V808S | O |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH |  |
| V715X |  |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C |  |
| V708S |  |
| V708C |  |
| V706T |  |
| V706C |  |
| V706M |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |
|  |  |
|  |  | channel when the RGB input signal is switched using the "SET_RGB" macro command. It also selects the applicable channel for the touch switch emulation function.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled) © : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :---: |
| F0 | SET_RGB |  |
| F1 | 8: |  |
| CH selection (selects the RGB channel) |  |  |
|  | 5: <br> 6: |  |

## Example

- \$u100 = $8(\mathrm{~W}) \quad$ [RGB input channel selection]
\$u101 = 6 (W) [Specify RGB IN2.]
SYS (SET_RGB) \$u100
The above program switches to RGB IN2.


## Supplemental remarks

- This function can be used only when the "GU-11" unit is attached to the V8 series.
- The default is [RGB IN1].
- The setting is maintained until the power is turned OFF. When the power goes OFF the setting is cleared and the default is set.
- This macro command is invalid if [ $\square$ Use Touch Switch] and [ $\square$ 2Port] are checked. These options appear for [Touch Switch] under [Others] in the [Device Connection Setting] dialog.
For more information on touch switch emulation, refer to the V8 Series Reference Manual.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SYS (SET_BKLT) F1

## Function: Backlight control

This macro command is used to control the backlight.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | ( |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :--- | :--- |
| F0 | SET_BKLT |  |
| F1 | $0:$ OFF <br> $1: ~ O N$ | $2:$ OFF time change | | Valid when [Auto 1/2/3] is |
| :--- |
| selected |

## Example

- \$u100 = $0(\mathrm{~W}) \quad[\mathrm{OFF}]$
SYS (SET_BKLT) $\$ \mathrm{Bu} 100$

The above program turns off the backlight.

## Supplemental remarks

- When [Always ON] is selected for [Action] on the [Backlight] tab window in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]), the macro command is invalid.
- While bit 11 in the read area " $\mathrm{n}+1$ " is set (ON), the macro command is invalid.
- Do not execute the macro command in macros to be executed constantly using a CYCLE macro, an interval timer, or an event timer macro.
- The use of a switch ON macro to execute a backlight turn-on command will not be possible.
- At power-on, the backlight is restored to the status as set in [Backlight] tab window (initial status) in the [Unit Setting] dialog ([System Setting] $\rightarrow$ [Unit Setting]). The internal memory $\$ \mathrm{~L}$ is available to retain the value set with this macro command. By using the initial macro at power-on, this macro command is executable according to the value you stored with $\$ \mathrm{~L}$.
- The result of macro execution is stored in \$s72. When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

 ○

## SYS (RESTART) F1

## Function: Restart

This macro command is used to restart the $V$ series when the time (in seconds) specified in [F1] has elapsed.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :--- | :--- |
| F0 | RESTART |
| F1 | $0-60:$ Time $(\mathrm{sec})$ |

## Example

- \$u100 = 10 (W) [sec]

SYS (RESTART) \$u100
The above program maintains the check screen for 10 seconds and then switches it to the RUN screen.

## Supplemental remarks

- When the macro command has been executed, the data in the internal memory \$u becomes " 0 ".
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) | Contents |
| :---: | :--- |
| -1 | Execution error |

## SYS

| V815X |  |
| :---: | :---: |
| V812S |  |
| V810S |  |
| V810T |  |
| V810C |  |
| V808S |  |
| V808C |  |
| V806T |  |
| V806C | $\bigcirc$ |
| V806M | $\bigcirc$ |
| V808CH |  |
| V715X |  |
| V712S |  |
| V710S |  |
| V710T |  |
| V710C |  |
| V708S |  |
| V708C | $\bigcirc$ |
| V706T |  |
| V706C | $\bigcirc$ |
| V706M | $\bigcirc$ |
| V612T |  |
| V612C | $\bigcirc$ |
| V610S |  |
| V610T |  |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT |  |
| V606ic | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C | $\bigcirc$ |
| V606M | $\bigcirc$ |
| V606eC | $\bigcirc$ |
| V606eM | $\bigcirc$ |
| V609E |  |
| V608CH | $\bigcirc$ |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SYS (CONTRAST) F1

## Function: Contrast adjustment

This macro command is used to adjust the contrast.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | () |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :--- | :--- |
| F0 | CONTRAST |  |
| F1 | 0: UP <br> 1: DOWN <br> 2: CENTER | Invalid if F1 = 2 |
| F1+1 | $0-100$ |  |

## Example

- \$u100 = 1 (W) [DOWN]
\$u101 = 10 (W) [10 levels]
SYS (CONTRAST) \$u100
The above program lowers the contrast by 10 levels from the current level.


## Supplemental remarks

- The macro command is valid for STN display only.
- In addition to the macro command, the SYSTEM, F2, F3, and F4 switches are also available to adjust the contract.
- When the power is turned off and on again after a contrast adjustment, the contrast level set finally takes effect.
- If a V706C/M or V606e is in use, the macro command will cause a communication pause for several hundred milliseconds because of storing the setting value in the FROM. Avoid the frequent use of the macro command.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

## All models

SYS (CHG_LANG) F1

## Function: Language change

This macro command is used to switch the language displayed on MONITOUCH to the language specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

O : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  |
| :--- | :--- |
| F0 | CHG_LANG |
|  | 0: Language 1 |
|  | 1: Language 2 |
| F1 | 2: Language 3 |
|  | $:$ |
|  | 13: Language 14 |
|  | 14: Language 15 |
|  | 15: Language 16 |

## Example

In the example below, the ON macros for the screen change switches are used to switch between two languages.


## Supplemental remarks

- When the screen is switched, the language also switches.

To change the language on the same screen, use the "SYS(RESET_SCRN)" command (page 4-291).

- At power-on, the language as specified for [Initial Interface Language] in the [Font Setting] dialog takes effect (initial status).
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

SYS (RESET_SCRN) F1

## Function: Redisplay screen

This macro command is used to reset the currently displayed screen. It is convenient for switching languages and for switching the display of screen libraries.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | $\bigcirc$ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)
Setting range


## Example

- \$u100 = 0H (W)

SYS (RESET_SCRN) \$u100
Close macro, open macro, and internal memory \$T are initialized and the screen currently displayed is reset.

- $\$ \mathrm{u} 100=\mathrm{CH}(\mathrm{W})$

SYS (RESET_SCRN) \$u100
The screen currently displayed is reset without executing close macro and open macro.

## Supplemental remarks

- The macro command is invalid in screen OPEN, screen CLOSE, overlap library OPEN, overlap library CLOSE, and initial macros. Executing these error results in failure.
- The macro command is valid only once in a macro created on the macro edit sheet. Its execution timing is set at the end of the macro on the edit sheet.
- When screen internal switching is disabled (the 13th bit of read area $n+1$ is ON ), the macro is invalid.
- [Function: Return] for the switch is valid even after using this command.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  | Contents |
| :---: | :--- | :--- |
| -1 | Execution error |  |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| V612T | $\bigcirc$ |
| V612C | $\bigcirc$ |
| V610S | $\bigcirc$ |
| V610T | $\bigcirc$ |
| V610C | $\bigcirc$ |
| V608C | $\bigcirc$ |
| V606iT | $\bigcirc$ |
| V606iC | $\bigcirc$ |
| V606iM | $\bigcirc$ |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SYS (GET_STATUS_FL) F1

## Function: FL-Net information acquisition

This macro command is used to acquire the FL-Net node information.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | ( |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  |  | Value |
| :---: | :---: | :---: |
| F0 |  | GET_STATUS_FL |
| Local node information | F1 | 0: Local node information |
|  | \$s627 | Local node FA link status |
|  | \$s628 | Local node status |
|  | \$s629 | Local node FL-Net status |
|  | \$s646 | Current permissible time for refresh cycle |
|  | \$s654 | Current minimum permissible frame interval |
| Guest node information | F1 | 1-254: Guest node information |
|  | \$s647 | Guest node number |
|  | \$s648 | Host status |
|  | \$s649 | Guest node area 1 top address |
|  | \$s650 | Guest node area 1 data size |
|  | \$s651 | Guest node area 2 top address |
|  | \$s652 | Guest node area 2 data size |
|  | \$s653 | Guest node FA link status |

$: \leftarrow \vee$ series (Return data)

## Example

- \$u100 = 0 (W)

SYS (GET_STATUS_FL) \$u100
The above program acquires the local node information.

- \$u100 = 2 (W)

SYS (GET_STATUS_FL) \$u100
The above program acquires node No. 2 information.

## Supplemental remarks

- The macro command is valid for FL-Net communication only.
- For more information, refer to the Specifications for Communication Unit FLNet.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| V815X |  |
| :---: | :---: |
| V812S |  |
| V810S |  |
| V810T |  |
| V810C |  |
| V808S |  |
| V808C |  |
| V806T |  |
| V806C |  |
| V806M |  |
| V808CH | $\bigcirc$ |
| All V7 models |  |
| V612T |  |
| V612C |  |
| V610S |  |
| V610T |  |
| V610C |  |
| V608C |  |
| V606iT |  |
| V606iC |  |
| V606iM |  |
| V606C |  |
| V606M |  |
| V606eC |  |
| V606eM |  |
| V609E |  |
| V608CH | $\bigcirc$ |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

SYS (SET_DSW) F1

## Function: Deadman switch setting

This macro command is used to set the deadman switch for V808CH/V608CH.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | © |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :--- | :--- |
| F0 | SET_DSW |
| F1 | 0: Invalid <br> 1: Valid |

## Example

- \$u100 = 1 (W) [Valid]

SYS (SET_DSW) \$u100
The above program enables the deadman switch.

## Supplemental remarks

- The macro command is valid for V808CH/V608CH only.
- In addition to the macro command, [Handy-Sized Display Setting] ([System Setting] $\rightarrow$ [Unit Setting] $\rightarrow$ [Handy-Sized Display Setting]) is also available to enable/disable the deadman switch.
At power-on, [Handy-Sized Display Setting] takes effect (initial status). If you wish to change the status during RUN, use the macro command. Note that setting by the macro command is restored to the initial status by turning off the power.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## SYS (OUT_ENQ) F1

## Function 1: Universal serial (interrupt)

This macro command is used to execute an interrupt.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | ๑ |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value | Remarks |
| :---: | :--- | :--- |
| F0 | OUT_ENQ |  |
| F1 | $10-2 F_{\text {HEX }}$ : ENQ No. |  |
| F1+1 | Transfer format <br> $0:$ Numerical <br> $1: ~ C h a r a c t e r i s t i c ~$ | If F1+1 =1 |
|  | $1-16384:$ Word count | If F1+1 =1 |
|  | $2-32768:$ Number of bytes |  |
| F1+3 | Top address number | $0:$ Non-wait |
| F1+4 | $1:$ Wait | Executes the next macro <br> transmission is complete |

## Example

The following programs transmit the specified data to the host when the character display (\$u200) shows "ABCD."

- Transfer data format: Numerical
$\$ \mathrm{Lu} 100=10 \mathrm{H}(\mathrm{W}) \quad$ [ENQ No.]
\$u101 = $0(\mathrm{~W}) \quad$ [Numerical]
\$u102 = 2 (W) [Word count]
\$u103 = $200(\mathrm{~W}) \quad$ [Top address]
\$u104 = 0 (W) [Non-wait]
SYS (OUT_ENQ) \$u100 Macro execution
Data received at the host: 3431343234333434 H
- Transfer data format: Characteristic
$\$ \mathrm{u} 100=10 \mathrm{H}(\mathrm{W}) \quad$ [ENQ No.]
\$u101 = 1 (W) [Characteristic]
\$u102 = $4(\mathrm{~W}) \quad$ [Number of bytes]
$\$ \mathrm{~L} 103=200(\mathrm{~W}) \quad$ [Top address number]
\$u104 = 0 (W) [Non-wait]
SYS (OUT_ENQ) \$u100
Data received at the host: 41424344 H


## Supplemental remarks

- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |


| All V8 models |  |
| :--- | :---: |
| All V7 models | $\bigcirc$ |
| All V6 models | $\bigcirc$ |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## Function 2: A-link+Net10 (network designation)

This macro command is used to designate a target network, with which a connection will be established.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | OUT_ENQ |  |
| F1 | 0: Fixed |  |
| F1+1 | 2: Fixed |  |
| F1+2 | System code <br> $1:$ <br>  <br> 2: NET/10 <br> 2: NET II (B) |  |
|  | $0:$ Fixed | If F1+2 $=2$ |
|  | 1: Network number | If F1+2 = 2 |

## Example

```
- $u100 = 0 (W) [Fixed]
    $u101 = 2 (W) [Fixed]
    $u102 = 1 (W) [NET/10]
    $u103 = 3 (W) [Network number]
    SYS (OUT_ENQ) $u100
```

According to the above program, the PLC connected to the V series accesses the PLC NET 10 on network No. 3.

## Supplemental remarks

- The macro command is valid when [A-link + Net10] is selected for [Select PLC1 Type].
- Be sure to use the macro command in an OPEN macro for the screen. If it is used in any other way, the network will change immediately after the command is executed and a communication error will result.
- For more information, refer to the V8 Series Connection Manual.
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

## SYS

| All V8 models | $\bigcirc$ |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI |  |
| TELLUS2 HMI |  |

## SYS (SET_SYS_CLND) F1

## Function: System calendar setting

This macro command is used to set the values of seven words starting from the address specified in [F1] to the system calendar.
The PLC calendar is not changed.

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 〇 |  |  |  |

$\bigcirc$ : Setting enabled (indirect designation disabled)
( ) : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |  |
| :---: | :--- | :--- |
| F0 | SET_SYS_CLND |  |
| F1 | $0-: \quad$ Year (4-digit/2-digit) |  |
| F1+1 | $1-12:$ Month |  |
| F1+2 | $1-31:$ Day |  |
| F1+3 | $0-23:$ Hour |  |
| F1+4 | $0-59:$ Minute | Invalid; to be automatically <br> calculated by MONITOUCH |
| F1+5 | $0-59:$ Second |  |
| F1+6 | Day of the week |  |

## Example

- \$u100 = 2005 (W) \$u101 = 7 (W) $\$ \mathrm{~L} 102$ = $15(\mathrm{~W})$ \$u103 = 15 (W) \$u104 = 0 (W) \$u105 = 0 (W) SYS (SET_SYS_CLND) \$u00100
The above program sets the calendars in MONITOUCH to July 15, 2005 on Friday at 15:00:00.


## Supplemental remarks

- When setting calendar data for PLC 1 to 8, use a macro command " PLC_CLND" (page 4-148).
- The result of macro execution is stored in \$s72.

When the execution of the macro is normally complete, the value at the address is not updated. Therefore, before macro execution, resetting the value at the address to zero is recommended.

| Code (DEC) |  |
| :---: | :--- |
| -1 | Execution error |

HMI-FUNC HMI-UserFunc (F1, " ")

| All V8 models |  |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## Function: DLL function execution

This macro command is used to execute the function in the dll file loaded to the table specified in [F1].

## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 |  |  |  | $\bigcirc$ |

O: Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | HMI_UserFunc |
| F1 | $000: \quad$ Table number |
|  | $\vdots$ |
|  | Function name |

## Example

- HMI_UserFunc (000, "DspMsg")


| Table No. | dII | Function defined in dll file |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 000 | Test2.dll | DspMsg | Macro execution | Tellus $\times$ |
| 001 | Test1.dll | aa |  | d |
| : | : | . |  |  |
| 255 |  |  |  |  |

## Supplemental remarks

- This macro command is valid, provided that either "TELLUS Ver. 3" or "TELLUS" is selected in the [Edit Model Selection] dialog.
- It is necessary to load the dll file by HMI-LoadDII in advance.

HMI-FUNC

| All V8 models |  |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

HMI-LoadDII (F1, " ")

## Function: Load DLL file

This macro command is used to load a dll file prepared by users to the table specified in [F1].


## Available memory

|  | Internal memory | PLC 1-8 memory | Memory card | Constant |
| :---: | :---: | :---: | :---: | :---: |
| F1 |  |  |  | $\bigcirc$ |

$\bigcirc$ : Setting enabled (indirect designation disabled)
© : Setting enabled (indirect designation enabled)

## Setting range

|  | Value |
| :---: | :--- |
| F0 | HMI_LoadDII |
| F1 | $000: \quad$ Table number |
|  | $\vdots$ |
|  | Location of dIl file (path) |

## Example

- HMI_LoadDII (000, "C:\Test2.dll")

* If the desired dill file is stored in the folder where TELLUS is installed, specify the file name only.
HMI_LoadDII (001, "Test1.dll")
Table number, to which the dIl file will be loaded


## Supplemental remarks

- This macro command is valid, provided that either "TELLUS Ver. 3" or "TELLUS" is selected in the [Edit Model Selection] dialog.
- When executing the function in the loaded dll file, use HMI_UserFunc.
- Once a dll file is loaded, the function in the file can be executed by HMI_UserFunc repeatedly as desired in, for example, an initial macro.


## HMI-FUNC

| All V8 models |  |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## HMI-ShutDown

## Function: Computer shutdown

This macro command is used to shut down the computer.

## Example

- HMI-ShutDown



## Supplemental remarks

- This macro command is valid, provided that either "TELLUS Ver. 3" or "TELLUS" is selected in the [Edit Model Selection] dialog.
- If the macro command is executed on a panel computer without the power-off function, the message indicating that the computer is ready to be turned off appears.

HMI-FUNC

| All V8 models |  |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

HMI-UserExe (" ")

## Function: Application file execution

This macro command is used to execute an exe file.

## Setting range

|  | Value |
| :---: | :--- |
| F0 | HMI_UserExe |
| Text | exe file and the parameter of the file to be executed concurrently |

## Example

- HMI_UserExe ("notepad.exe "C:IHMI.txt"")



## Supplemental remarks

- This macro command is valid, provided that either "TELLUS Ver. 3" or "TELLUS" is selected in the [Edit Model Selection] dialog.


## HMI-FUNC

| All V8 models |  |
| :---: | :---: |
| All V7 models |  |
| All V6 models |  |
| TELLUS3 HMI | $\bigcirc$ |
| TELLUS2 HMI | $\bigcirc$ |

## HMI-Close

## Function: TELLUS termination

This macro command is used to terminate the Tellus HMI mode.

## Supplemental remarks

- This macro command is valid, provided that either "TELLUS Ver. 3" or "TELLUS" is selected in the [Edit Model Selection] dialog.

MEMO

Please use this page freely.


# Hakko Electronics Co., Ltd. www.monitouch.com 

Sales 890-1, Kamikashiwano-machi, Hakusan-shi, Ishikawa, 924-0035 Japan
TEL +81-76-274-2144 FAX +81-76-274-5136


[^0]:    * An indefinite value is stored in [FO].

[^1]:    * An indefinite value is stored in [FO].

[^2]:    * An indefinite value is stored in [FO].

[^3]:    * An indefinite value is stored in [F0].

[^4]:    * An indefinite value is stored in [F0].

[^5]:    * 8000 (HEX): broadcasting

